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Abstract 

Although parallel pointer-based algorithms have been studied extensively by the research commu- 
nity, implementations have met with marginal success, even for the simplest applications. In a 
careful implementation study of parallel list ranking (and the related list-scan operation) and par- 
allel dynamic balanced trees operations, I show that indeed parallel pointer-based algorithms can 
have substantial speedup over fast workstations. List ranking is over 200 times faster on a CRAY 

C90 than on a high-end DEC Alpha workstation, and the balance tree algorithms are 6.3 to 6.8 
times faster on eight processors than on one of a SGI Power Challenge, and 4.1 to 4.4 times faster 
on five processors than on one of a SUN Ultra Enterprise 3000. List ranking is a primitive in many 
parallel tree and graph algorithms, while dynamic balanced trees are important for maintaining 
databases, providing ordered set operations, and index searching. The parallel algorithms for list 
ranking and balanced trees are new; the key to their success is that they are both work optimal and 
very simple. In fact, the algorithms for set operations seem simpler than any previous sequential 
algorithms with the same work bounds, and might, therefore, be useful in a sequential context. 

The algorithms as implemented, however, do not have optimal depth (parallel time). This dis- 
sertation shows how to reduce the depth of the tree algorithms to make them optimal by using 
pipelining. Pipelining has been used previously, but the method used here allows for asynchronous 
execution and for pipeline delays that are data dependent and dynamic. Rather than making the 
coding more difficult, the method lets the user write the algorithms using futures (a parallel lan- 
guage construct) and leaves the management of the pipelining to an efficient runtime system. To 
determine the runtime of algorithms, I first analyze the algorithms in a language-based cost model 
in terms of work and depth of the computations, and then show universal bounds for implementing 
the language on various machines. 
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Chapter 1 

Introduction 

Linked lists and trees are two of the most fundamental data structures in computer science. They are 
so elementary and important that they appear early in introductory computer science courses and 
are ubiquitous in serial algorithms and applications. In addition, there has been much theoretical 
parallel algorithm work. But surprisingly, these structures are rarely used in parallel implementa- 
tions, and there has been little performance experimentation. For example, not one of the NAS 
benchmarks uses lists or trees [10]. One reason is that early work has concentrated on scientific com- 
puting which, in large part, uses dense, regular, and static data structures such as arrays. Another 
is that the use of pointers in lists and trees makes them seem inherently sequential; developing par- 
allel algorithms for them requires major rethinking. Finally, because accessing pointer-based data 
is communication intense, early parallel implementations have been disappointing, barely matching 
the then-current fastest workstation speeds. 

There are several reasons, however, why pointer-based algorithms are likely to become more 
common. Scientific computing is moving to irregular, sparse, and dynamic applications and algo- 
rithms. For example, the space and time complexity of sparce problems using regular represen- 
tations can be substantially reduced using pointer-based representations. Because shared-memory 
systems with a small number of processors are becoming quite common, there is more demand 
to move single processor applications to multiple processors. Thus, parallel computing is ab- 
sorbing more applications, including those that use pointer-based objects. Finally, more general- 
purpose software solutions are available to improve irregular computation performance, such as 
high-level language support [58, 21], improved compilation techniques [14, 104, 80], advanced run- 
time sytems [57, 108, 26, 90], and efficient communication protocols [112, 106]. 

Over the last 20 years there has been much theoretical work in parallel pointer-based algorithm 
design [100]. Initially, algorithm designers developed algorithms that were asymptotically fast but 
not processor efficient. That is, the total work (the work efficiency) of the processors can be 
far greater than a constant factor more than the sequential time complexity of the problem [75]. 
Because work-efficient algorithms use far fewer processors or the same number of processors with 
each processor doing less work, algorithm designers now ensure that their algorithms are work- 
efficient. Often these algorithms are asymptotically very fast but are so complex and have such 
large constant factors that they are useful only for extremely large data sets. 

Most of this theoretical work is based on the Parallel Random Access Memory (PRAM) machine 
model. Critics complain that the model is not realistic because it assumes that the time for memory 
access is comparable to the time for other operations and there is no cost for synchronization. 
On most multiprocessor machines memory access can be 100 times slower than a floating point 
operation. There are many reasons why there is such a time difference. In some cases there is high 
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communication overhead in which a processor is idle every time it sends and receives data requests. 
The physical distances of the data transmission and number of intermediate routing steps can vary 
greatly and result in high latencies (the time between the request for the data and the receipt or 
delivery of the data). Many machines have limited bandwidth on the assumption that application 
can take advantage of data locality (data either can be reused or is near other recently used data). 
Congestion on the network wire, at a router, or at a memory bank can cause further delays. To 
deal with these widely varying physical characteristics of multiprocessor machines, researchers have 
proposed a plethora of more realistic machine models and designed new algorithms for these models. 
But these models require the designer to consider more detail and often result in more complex 
algorithms than the corresponding optimal PRAM algorithms. 

Since machines have finite resources, however, it is important to consider factors other than 
asymptotic running times, which rarely can be achieved in practice. This dissertation shows that the 
most important criteria for practical-size problems are work efficiency and small constants: Given 
that current supercomputer and Massively Parallel Processor (MPP) machines usually are used for 
problems that are much larger than the number of processors, the running time of an algorithm is 
dominated by the total work and its associated constants and not so much by asymptotics. Because 
there has been little theoretical work on the constants involved in the algorithms and because it 
is hard to take into account physical machine parameters in the machine models on which the 
algorithms are based, the best sources for comparison are actual implementations. 

Considering that there have been hundreds of theoretical papers on pointer-based algorithms, 
implementation work has been quite limited. Hillis and Steele [61] implemented list ranking on the 
CM-2. Narayannan implemented data-parallel and replicated algorithms for single-source shortest 
path on the CM-2 and MP-1 [89]. Anderson and Setubal [4] implemented Goldberg's maximum flow 
algorithm on a Sequent Symmetry. Greiner [51] compared several parallel connected-components 
algorithms for general graphs on the CM-2 and the CRAY C90. Lumetta et al. followed with an 
implementation of a hybrid parallel/serial connected components algorithm on the distributed mem- 
ory machines Cray T3D, Thinking Machines CM-5, and Meiko CS-2 [81, 74]. Hsu et al. [63, 65, 64] 
built a library of pointer-based algorithms for the MasPar MP-1, including connected components, 
open ear decomposition, and list ranking among others. Hsu et al. [66] further fine-tuned four 
connected-components algorithms for the MasPar MP-1 while Goddard et al. [78, 77] developed 
connected-components algorithms that use the faster 2-D mesh communication links of the MasPar 
MP-1. Most other connected-component implementations are restricted to grid graphs or special- 
ized applications. Messeguer implemented skip lists on a CM-200 [85], while Gabarro and Petit 
implemented 2-3 trees on CM-200 [47]. 

An active area of research, however, is experimental work on parallel N-body algorithms for 
a variety of architectures (see [15] for an overview of some previous work). These algorithms 
simulate the movement of particles under some type of force. Although they use a quad-tree in 2-D 
and an oct-tree in 3-D to partition space, and thus can be classified as pointer-based algorithms, 
N-body problems are more coarse-grain and computationally intensive than the fine-grain low- 
computation applications studied above. Consequently, the problems and techniques needed for 
good performances are quite different for the two types of applications. This dissertation focuses 
on the fine-grain pointer-based algorithms, for which there is little performance data. 

1.1    Thesis Statement 

If the PRAM is unrealistic, then do PRAM algorithms have any value? What is the performance 
of PRAM pointer-based algorithms in practice? Do they necessarily have poor performance? Can 
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carefully hand-coded implementations on the best hardware be fast? What hardware and software 
requirements are necessary for good performance? Which parallel algorithms perform well and how 
well, and what are their characteristics? These questions motivated the work in this dissertation, 
and the results herein provide some answers. 

Thesis Hypothesis:    Pointer-based algorithms, used so commonly in serial computation, can be 
fast on parallel machines with good memory subsystems. 

Previous work implementing pointer-based PRAM algorithms have been disappointing, barely 
matching serial algorithms implemented on fast workstations available at the same time as the 
parallel machines. One problem is that machines, such as the CM-2, CM-5, and MP-1, are mul- 
tiprocessor machines that were built using custom processor chips that were much slower than 
contemporary commodity processor chips found in workstations. In addition, these machines have 
long memory access latencies and and insufficient bandwidth for such fine-grain algorithms. On the 
other hand, even commodity processors are not necessarily sufficient. The connected component 
implementation on the Cray T3D [81] shows good performance on graphs that can be easily be 
partitioned between processors, but poor performance on graphs that are hard to partition because 
the machine has distributed memory. The best overall performance for connected components was 
obtained on the CRAY C90 [51], which has extremely high memory performance. 

Many PRAM algorithms have large constants. With sequential algorithms it is often the simpler 
algorithms with the same (expected, amortized) asymptotic work that give the best performance, 
for example quicksort and splay trees. It is not clear that previous parallel implementations have 
sufficiently emphasized finding the simplest algorithms. Even with seemingly simple parallel algo- 
rithms, frequent synchronization, contention avoidance, and many-way case statements can increase 
constants dramatically. Frequent synchronization, for example, to keep processors in lock step, can 
ruin performance, especially on machines without specialized hardware; frequent contention avoid- 
ance, used by some pointer-based algorithms, can significantly reduce performance; and frequent 
testing of a number of cases, especially ones that cannot overlap, can make an algorithm impractical. 

Measure of success: To develop parallel pointer-based algorithms and their implementations 
that show reasonable speedup and are significantly faster than serial implementations on fast work- 
stations. 

By examining actual performance of parallel pointer-based algorithms we can start to under- 
stand what makes good parallel-algorithm design. If the algorithms that have the best performance 
are quite different from the ones being designed by the theory community, then my work may influ- 
ence future theoretical work. For example, Ranade [97] recently designed a list-ranking algorithm 
that uses ideas I present in this dissertation. In addition, if algorithm developers place more em- 
phasis on designing simple parallel algorithms with small constants, some designs may also provide 
new fast sequential algorithms. Finally, by demonstrating that parallel pointer-based algorithms 
can be fast, my work may show the potential for a wide variety of important applications. If there 
is an increased demand for pointer-based solutions, then there also may be increased pressure on 
hardware manufacturers to provide platforms that address the needs of these algorithms. 
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1.2    Methodology 

In this dissertation I consider two fundamental pointer-based problems, list ranking and maintaining 
dynamic balanced trees. They pose the same challenges common to most fine-grain pointer-based 
parallel algorithms: the parallel algorithms can be quite different from their serial counterparts 
and often having much higher overheads, memory accesses that are hard to optimize and cannot 
be scheduled at compile time, and huge communication bandwidth requirements. 

The work involves appraising various algorithms and data structures, designing and analyzing 
new algorithms, implementing the algorithms on high-performance hardware, and performing ex- 
periments that compare the sequential algorithm with one or more parallel algorithms. The two 
implementation studies are: 

• List ranking on a CRAY C90 vector multiprocessor. List ranking is the simplest of all pointer- 
based problems serially, while one of the hardest to get good parallel performance. The parallel 
algorithms are quite different from the serial one. On the other hand, the CRAY C90 is one 
of the fastest machines on which to run list ranking. Thus, in this setting we can see what 
the best performance we can expect is for the problem. 

• Maintaining balanced trees on shared-memory multiprocessors. The implementation is on an 
SGI Power Challenge and SUN Ultra Enterprise 3000 and uses the Cilk [26] runtime system 
to maintain and schedule multiple threads efficiently. While balanced trees have more obvious 
parallel implementations, the hardware platforms do not provide as good performance as the 
CRAY C90. However, even this problem shows reasonable speedup. 

In both cases the algorithms do not provide optimal asymptotic depth*(parallel time): The 
algorithms are 0(log2 n) depth, when 0(log n) depth is possible.* They are work efficient, however, 
in that they use the same number of operations, within constants, as their serial counterparts. In 
addition, the algorithms have small constants relative to optimal parallel algorithms, and hence are 
competitive with the serial algorithms when the problem size is large compared to the number of 
processors. The parallel balanced-tree algorithms are so simple that they may also be practical for 
serial implementations. 

On a more theoretical side, I show that the balanced binary tree operations can be made optimal 
using pipelining to provide O(logn) depth algorithms. The pipelining framework is more general, 
though, in that it can be applied to a variety of algorithms. The novelty of the pipelining, for this 
algorithm and others, is that the depth of the pipeline is data dependent and dynamic. Even so, I 
show, in joint work with Guy Blelloch, that by using futures (a parallel language construct) a user 
implementing the algorithms does not need to manage the pipelining explicitly. A runtime system 
manages it implicitly. The result is much simpler code and more asynchronous execution. 

The next three subsections gives an overview of the results of the list ranking implementations, 
the balanced tree implementations, and the pipelining framework. Chapters 2, 3, and 4 provides 
further details of the work. Finally, Chapter 5 discusses my contributions, future work, and some 
conclusions. 

"If we represent an algorithm by a bounded fan-in circuit (directed acyclic graph) then the time to evaluate the 
circuit in parallel is its depth and the total computational work done by the circuit corresponds to its size, the number 
of noninput nodes. In Chapter 3 I include subgraphs in the circuit that have unbounded fan-in. The number of edges 
in the subgraphs, however, is asymptotically the same as the number of nodes. Therefore, work still corresponds to 
the number of noninput nodes. 

*I use In for loge, lg for log2, and log when the base is arbitrary. 
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1.3    List Ranking and List Scan 

The first problem this dissertation considers is finding the rank or position of each node in a linked 
list, known as list ranking, and the related problem of finding the prefix sum of a linked list, know 
as list scan. Although, list ranking is one of the simplest of serial pointer-based algorithms, it is 
hard to get vector or parallel performance that is significantly faster than the serial performance. 
Because of data dependencies, there are no trivial work-efficient parallel algorithms. Most tend to be 
quite complex and have large constants. In contrast, the serial algorithm has very small constants. 
But even with a good parallel algorithm a compiler cannot schedule the data movement because 
the access patterns cannot be determined until runtime. Finally, the ratio of communication to 
computation is extremely high and, hence, any implementation is at the mercy of the memory 
system. 

List ranking has been studied extensively by the theory community and is used as a primitive 
for many tree and graph algorithms [1, 49, 48, 72, 76, 86, 87, 95, 101]. Table 1.1 gives a comparison 
of list-ranking algorithms. Wyllie's algorithm [115] is not work efficient since it takes 0(nlogn) 
operations on a n vertex linked list, whereas a serial algorithm takes O(n) operations. But, because 
Wyllie's algorithm is simple it works well for short lists or when we can increase the number of 
processors according to the linked-list size. On the other hand, work-efficient randomized pointer- 
jumping techniques suffer from having to take multiple trials on average before being able to perform 
a pointer jump and, therefore, results in larger constants. The known optimal deterministic parallel 
PRAM list-ranking algorithms have very large constants, which makes them impractical. 

Algorithm Time Work Constants Scratch Space 
Serial 0(n) 0(n) small c 
Wyllie [115] O(^p) 0(n\ogn) small n + c 
Blelloch/Reid-Miller 0(f + (logn)2) 0(n) small 5p + c 
Randomized [86, 6] 0(5 +log n) 0(n) medium > In 
Optimal [40, 41, 5] 0(f + logn) 0{n) very large > n 

Table 1.1     Comparison of several list ranking algorithms, where n is the length of the list, p is the number 
of processors, and c is a constant. 

1.3.1    Performance 

I implemented a few of the simplest list-ranking algorithms on the CRAY C90 to compare their 
performance with the parallel algorithm I developed with Guy Blelloch. They are the serial al- 
gorithm, Wyllie's algorithm, and randomized pointer-jumping algorithms of Miller/Reif [86] and 
Anderson/Miller [6]. Other work-efficient algorithms have much larger constants than the ones I 
implemented and, therefore, are likely to have worse performance. On one processor the parallel 
algorithms were vectorized, while the serial algorithm used no vectorization. Only my algorithm is 
faster than the serial algorithm and faster only when the list length was greater than a thousand. 
Wyllie's algorithm is almost as fast as the serial algorithm for moderate length lists. But for long 
lists, the longer the list is the poorer its performance. This performance is expected, since the 
algorithm has small constants but is not work efficient. The Anderson/Miller randomized pointer- 
jumping algorithm is only sightly slower than the serial and the Miller/Reif algorithm as about 
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three times slower.   All the parallel algorithms, however, outperform the serial algorithm given 
enough processors and a sufficiently large linked list. 

My implementation of list ranking and list scan on the CRAY C90 has continued, for four years, 
to be the world's fastest implementation, to the best of my knowledge. In addition, it is the first 
implementation of which I am aware that significantly outperforms fast workstations. For example, 
Table 1.2 shows that my list ranking algorithm is 200 times faster on 8 processors of the CRAY C90 
than on a high-end DEC 3000/600 Alpha workstation. Also, on one processor of the CRAY C90 
the vectorized algorithm is over eight times faster than the simple serial algorithm on the CRAY 

C90, which is significant since CRAY vector computers are very fast scalar machines (see Section 
7.8 of [59]). On 8 processors the vector parallel algorithm achieves a 50 fold speedup over the CRAY 

C90 serial code. 

Algorithm DEC Alpha Cray C-90 
cache memory Serial Vectorized 2 Proc. 4 Proc. 8 Proc. 

List Rank 98 690 177 21.3 10.9 5.8 3.1 
List Scan 200 990 183 30.8 16.1 8.5 4.6 

Table 1.2 Comparison of the asymptotic execution time (nsec) per vertex of our vector parallel list scan 
and list ranking algorithm on a CRAY C90 and the serial algorithm on a CRAY C90 and a DEC 3000/600 
Alpha workstation. On the Alpha, the table show times for when all the data can fit in the cache and when 
it must be stored in main memory. 

1.3.2    Reasons for success 

The primary advantage of my algorithm is that it is both work efficient and has small constants. It 
is also fully vector parallel. On the other hand, it uses a large number of rounds of communication. 
To perform well, therefore, it requires a machine that has either low latency or moderate latency 
with latency-hiding capabilities. Due to the nature of the problem, the machine also needs to have 
high memory bandwidth. The Cray vector multiprocessors have these capabilities and, as I argue 
later, closely resemble a PRAM. Thus, on the CRAY C90 our algorithm scales almost linearly with 
the number of processors. There is, however, some degradation in performance as the number of 
processors increases because the available memory bandwidth per processor decreases. 

The implementation of my list ranking algorithm is successful for several reasons: 

• I use high performance hardware. The most successful implementations of irregular and 
pointer-based algorithms have been on the Cray YMP class of vector multiprocessors [24, 
117, 98]. This class of machines has the best communication hardware available. 

• I use latency-hiding techniques to minimize bottlenecks in the hardware. By using many 
more virtual processors than physical processors and treating each element of a vector as a 
virtual processor, vectorization is possible. Whenever vector lengths are long, latencies to the 
functional units and memory can be hidden through pipelining. 

• I designed an algorithm and used my analysis of it to minimize overheads. Most importantly, 
the algorithm has small constants. It uses randomization to break symmetry and to mini- 
mize memory contention. In addition, randomization minimizes the need for load balancing 
between processors (the implementation does none). Another form of load balancing, how- 
ever, is required by vector processing. Completed virtual processors need to be removed from 
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the computation by compressing vectors.  I minimize the frequency of this compression by 
analyzing the algorithm analytically and empirically. 

1.4    Balanced Trees 

After linked lists, the next most common pointer-based data type is the tree. Trees are used 
extensively for data bases, parsing, computational geometry, text compression, and operating- 
system applications, to name a few. A common use of balanced trees is to provide ordered set 
operations or to maintain dynamic dictionaries. Sequentially these trees, such as AVL, red-black, 
and splay trees, provide O(logrc) time insert, delete, and search operations. Some also provide 
O(logra) time split and join operations. They also provide aggregate operations intersection, union, 
and difference, which can be performed sequentially or in parallel. These operations play an 
important role in, among other applications, databases queries and index searching [114, 83]. Like 
list ranking, the access patterns of balanced trees are data dependent and, therefore, can only be 
scheduled at runtime. In addition, as data locality is low and there is little computation for each 
memory access, the communication to computation ratio is very high. On the other hand, by their 
nature trees have obvious divide-and-conquer algorithms that make them easier to parallelize. 

As with list ranking, previous optimal parallel balanced-tree algorithms are far too complex to 
get good performance for realistic data sizes on existing hardware. Paul et al. [92] developed the 
first 0(logn + log TO) depth O(mlogn) work EREW PRAM algorithms for searching TO keys in, 
inserting TO keys into, and deleting TO keys from a 2-3 tree of n nodes. Highan and Schenk [60] 
extended the work to B-trees. Both sets of algorithms use pipelining to reduce the depth of the 
algorithms from O (log n log TO) to O (log n + log m). But the pipelining requires that the operations 
are carefully timed and adds complexity. Even without pipelining, although conceptually simple, 
whenever node splitting or merging is required the parallel algorithms need to consider more cases 
(especially for delete) than the corresponding sequential algorithms. Katajainen removes the need 
for pipelining in his EREW PRAM algorithms for set union, intersection, and difference using 2-3 
trees. He claims that they are optimal 0(log rc + log m) depth and 0(m log(n/m)) work algorithms, 
but the work analysis is not correct. It may be possible to modify the algorithms, however, to meet 
the bounds. Ranade [96] gives algorithms for processing least-upper-bound queries and insertion 
on distributed memory networks. Bäumker and Dittrich [13] give algorithms for search, insertion, 
and deletion into BB*(a) trees for the BSP* model. These algorithms require O(TOlogrc) work and 
appear to have large constants. 

For this thesis, I chose to use treaps [103] to develop parallel balanced-tree algorithms for 
several reasons. The structure of the trees is determined by the keys and random values used for 
balancing and not by the order in which the nodes are inserted and deleted or by global factors. 
The serial operations are simple and have competitive running times with other balanced trees. 
But most importantly the corresponding parallel operations are also simple and thus have small 
constants. In particular, the parallel delete operation is especially simple compared with other 
parallel balanced-tree delete operations. 

1.4.1    Features of parallel treap algorithms 

Treaps have only been studied in the sequential context and little is known about their performance. 
I extend previous work of treaps by providing and analyzing parallel algorithms on treaps and by 
presenting sequential and parallel experimental results that demonstrate their utility. Although the 
algorithms use two of the same building blocks used in the sequential algorithms (split and join), 
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the design and analysis of these new algorithms is quite different. The algorithms I present have 
the following properties, which together make them attractive from both a theoretical and practical 
point of view. 

• For two sets of size m and n with m < n, the algorithms for union, intersection, and difference 
run in expected 0(mlog(n/m)) serial time or parallel work. This is optimal. 

• The algorithms are significantly simpler than previous parallel and serial algorithms with 
matching work bounds. I therefore expect that the algorithms could be useful even in a 
sequential setting. This dissertation includes the full C code for these algorithms. 

• The parallelism in the algorithms comes purely from their divide-and-conquer nature. The 
algorithms are therefore easy to implement in parallel and well suited for asynchronous ex- 
ecution. I implemented the parallel versions of the algorithms in Cilk [26] with only minor 
changes to the sequential C code. 

• The algorithms are fully persistent—they create the resulting set while leaving the input sets 
untouched.* Such persistence is important in database and indexing applications. 

• The algorithms are efficient when the results are from interleaving blocks of the ordered input 
sets. For example, a variant of the union algorithm requires expected serial time (or parallel 
work) that is only logarithmic in the input sizes when the inputs have only a constant number 
of blocks. 

• The algorithms use the same representation of treaps as Seidel and Aragon [103] so that all 
their algorithms can be used on the same data without modification. 

1.4.2    Performance 

The SGI Power Challenge and SUN Ultra Enterprise 3000 multiprocessors that I used to implement 
these algorithms are somewhat different than the CRAY C90 vector multiprocessor I used for list 
ranking. All are shared-memory machines. But the CRAY has no cache and has fine-grain pipelined 
memory access, while the SGI and Sun machines use a coarser grain, cache-coherent memory man- 
agement system with cache lines of 128 bytes and 64 bytes, respectively. The bandwidth-to-memory 
relative to processor speeds for the SGI and Sun are not as high as for the CRAY. My implementation 
of the tree algorithms uses the Cilk [26] runtime system that schedules multithreaded computa- 
tions using work-stealing. Cilk uses asynchronous threads, whereas vector processing on the CRAY 

is synchronous. Therefore, because of the lower bandwidth and coarser granularity, we cannot 
expect the performance on the SGI and Sun to be as good as on the CRAY for these pointer-based 
algorithms. On the other hand, asynchronous processing is better suited to these tree algorithms. 

Sequentially, I show that search, insertion, and delete on treaps has a similar performance to red- 
black, splay trees, and skip lists. My experiments also demonstrate that the aggregate operations, 
intersection, union, and difference have sublinear performance when the tree sizes are unequal and 
even better sublinear performance when the results are from interleaved blocks of the ordered input 
sets. In parallel these operations have reasonable speedup: 6.3 to 6.8 speedup on 8 processors of 
the SGI Power Challenge, and 4.1 to 4.4 speedup on 5 processors of the SUN Ultra Enterprise 3000. 

'Note that just copying the inputs does not work since copying would violate the 0(m log(ra/m)) work bounds—it 
would require 0(n + m) work. 
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1.5    Pipelining With Futures 

The balanced-tree algorithms and my implementation of them as presented in the previous section 
have O(lognlogm) depth. I also show how the same algorithms can have 0(logn + logra) depth 
using pipelining. Pipelining in parallel algorithms takes a sequence of tasks each with a sequence 
of steps and overlaps in time the execution of steps from different tasks. Due to dependencies 
between the tasks or the required resources, pipelined algorithms are designed such that each task 
is some number of steps ahead of the task following it. I refer to this number of steps as the pipeline 
depth. The idea of using pipelining is not new. Paul, Vishkin, and Wagener [92] used pipelining to 
reduce the computation depth of their EREW PRAM algorithms on 2-3 trees and Cole [37] used 
it to reduce the computation depth of merge sort. But previous PRAM pipelining algorithms have 
been synchronous, and the depth of the pipeline is fixed throughout the execution of the algorithm. 
The pipelining of the treap algorithms, however, is asynchronous and the pipeline depth can vary 
throughout the computation: The time (depth) from the start of a task to when the first result of 
the task is ready to be processed by the next task is data dependent and may differ from task to 
task. For these algorithms, and another tree algorithm I give, there would be no reduction in the 
depth of the algorithms if the pipeline depth was fixed. 

Although pipelining has led to theoretical improvements in algorithms, from a practical point 
of view pipelining can be cumbersome for the programmer—managing the pipeline involves careful 
timing among the pipeline tasks and asynchronous processing adds another layer of complexity. 
In this dissertation, I show that many algorithms can be automatically pipelined using futures, a 
construct designed for parallel languages. If the parallelism in the algorithm is expressed using the 
futures, the algorithm code need not change to get this pipelined depth reduction; the pipelining is 
expressed implicitly and managed automatically by a runtime system. In addition, if code is of a 
restricted form, called linearity, the algorithms have no concurrent memory access and the runtime 
system is simpler. 

To analyze the running times of algorithms I use a two step process. I first consider a language- 
based cost model based on futures and analyze the algorithms in this model. The model is a 
slight variation of the PSL model [52]. Then, together with Blelloch, I show universal bounds for 
efficiently implementing the model on various machine models. 

I describe and analyze four algorithms with the language-based model. The first is a merging 
algorithm. It takes two binary trees with the keys sorted in-order within each tree and merges them 
into a single tree sorted in-order. The code is very simple and, assuming both input trees are of size 
n, the nonpipelined parallel version requires 0(log2 n) depth and 0(n) work. I show that, by using 
the same code but implementing it with futures, the depth is reduced to O(logn), which meets 
previous depth bounds. The next two algorithms use a parallel implementation of the treap data 
structure. I show randomized algorithms for finding the union and difference of two treaps of size 
m and n, m < n in O(log n + log m) expected depth and 0(m\og(n/m)) expected work. Like the 
merge algorithm, the code is simple. There are no previous parallel or pipelined results for treaps 
of which I am aware. These three algorithms require a dynamic pipeline, which varies its depth 
depending on the input data. As such asynchronous algorithms have not been considered before, I 
developed a new technique for analyzing their computation depth. The fourth algorithm is a variant 
of Paul, Vishkin and Wagener's (PVW) 2-3 trees [92]. Because the bottom-up insertion used in the 
PVW algorithm does not map naturally into the use of futures, I describe a top-down variant that 
does. As with the PVW algorithm, the pipelining improves the algorithm complexity for inserting 
m keys into a tree of size n from 0(log n log m) to 0(log n + log m) depth and 0(m log n) work. It 
can be implemented synchronously and with a fixed pipeline depth. 
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To complete the analysis I next consider implementations of the language-based model on 
various machines. The work and depth costs along with Brent's scheduling principle [29] imply 
that, given a computation with depth d and work w, there is a schedule of actions onto processors 
such that the computation will run in w/p + d time on a p-processor PRAM. This principle, 
however, does not tell us how to find the schedule online—in particular it does not address the 
costs of dynamically assigning threads to processors nor the cost of handling the suspension and 
restarting required by futures at runtime. Since many of the algorithms are dynamic, the schedule 
cannot be computed offline. I show how a single runtime system can efficiently manage the pipeline 
and schedule the threads of any pipelined algorithm coded with futures. The runtime system is 
guaranteed to be efficient and, if the algorithm is of a certain restricted type, to use no concurrent 
memory accesses. Furthermore, the schedule can be optimized, for example, for space efficiency or 
locality. 



Chapter 2 

List Ranking and List Scan on the 
Cray C90 

In this chapter I consider one of simplest pointer-based operations, list ranking (and the related 
list scan), and its parallel implementation.* My aim was to understand the problems involved in 
implementing parallel pointer-based algorithms and their possible solutions, and to see how well 
these kinds of algorithms perform in practice. First I introduce list ranking and compare the 
performance of several list ranking algorithms. Then I describe vector multiprocessors and their 
close relationship to the PRAM model. In Section 2.2 I highlight the five list-ranking algorithms 
I implemented. In Section 2.3 I describe my implementation of Blelloch/Reid-Miller list ranking 
algorithm in more detail and give timing data. Then, in Section 2.4 I give a cost model of my algo- 
rithm, analyze its expected performance, and describe how I tuned the parameters. In Section 2.5 
I describe the multiprocessor version of the algorithm and its performance. In Section 2.6 I review 
some other PRAM list-ranking algorithms. Finally, in Section 2.7 I discuss my conclusions and 
future directions. In an appendix to the chapter, I present pseudo-C code for list scan and give a 
detailed account of the vector operations required to execute the code. 

2.1     Introduction 

List ranking finds, for each vertex in a linked list, the number of vertices that precede that vertex 
in the list. This information, for example, can be used to reorder the vertices of a linked list into an 
array in one parallel step. List scan computes, for each vertex in the linked list, the "sum" of the 
values of all prior vertices in the list, where "sum" is a binary associative operator. List ranking 
and list scan are related in that list ranking is the list scan where integer addition is the operator 
and the values to be summed are all equal to one. Because list ranking needs to read the link data 
only, whereas list scan needs to read both the link and value data, list ranking is usually faster 
than list scan (see Table 1.2). In addition, the scan operator can be more costly to compute than 
the increment operator used in list ranking. List-ranking and list-scan algorithms are otherwise the 
same. 

For this dissertation I introduce a new list-ranking algorithm and its implementation on a 
CRAY C90 vector multiprocessor. I chose the CRAY C90 because, compared to other commercial 
architectures, it has very high memory bandwidth and fine-grain access to memory, and I wanted 
to see how well list ranking could perform under the best of circumstances.  Because list ranking 

'This chapter in large part is taken from [98] 

11 



12 CHAPTER 2.   LIST RANKING AND LIST SCAN ON THE CRAY C90 

makes great demands of the memory system, it would certainly have much worse performance on 
other architectures. To hide memory latency I used virtual processing. To avoid memory bank 
contention I used randomization. To get the best performance possible I developed a cost model of 
the algorithm, empirically determined the execution time of each parallel loop, and then analytically 
tuned the parameters. 

Although list ranking is simple, it typifies the kinds of problems for which it is hard to get good 
vector or parallel performance. In particular, it uses an irregular data structure, it is communication 
intensive, and its communication patterns are data dependent and dynamic. From an algorithmic 
point of view it is interesting because it has features common to many problems: symmetry breaking 
and load balancing. Furthermore, because the serial algorithm is so simple, the parallel overhead 
must be kept small so that the parallel implementation compares well with a serial implementation. 
The problem is that no previous parallel algorithm is simultaneously work efficient and has small 
constants. 

Given that current supercomputers and massively parallel processor machines are usually used 
for problems that are much larger than the number of processors, the running time of an algorithm 
is dominated by the total work and its associated constants and not so much by the asymptotic 
time. Therefore, my goal was to design an algorithm that both is work efficient and has small 
constants, even if it meant sacrificing optimal depth. To evaluate the performance of my algo- 
rithm, I implemented the list-ranking algorithms that are likely to be the most competitive: serial, 
Wyllie, Miller/Reif [86], and Anderson/Miller [6]. The latter two use randomized pointer jumping. 
Figure 2.1 shows the list-scan execution times on one CRAY C90 vector processor. Wyllie's algo- 
rithm is faster than mine for lists shorter than 1000 vertices. But for longer lists, my algorithm 
outperforms other algorithms. In addition, the space required by my algorithm, beyond what is 
needed for the list, depends on the number of (virtual) processors, which can be substantially less 
than the space required by other algorithms (see Table 1.1). 

u v 
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•     • Miller/Reif 
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Wyllie 
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Figure 2.1: Time per vertex for several list-scan algorithms on one CRAY C90 vector processor. The times 
for Wyllie's algorithm and our algorithm were obtained on a dedicated machine. The sawtooth shape of the 
Wyllie curve is due to the discontinuity of [logrc — 1], which is the number of rounds of pointer jumping 
done by the algorithm. 

2.1.1    Vector Multiprocessors as PRAMs 

I chose to implement list ranking on a vector multiprocessor because these machines, such as the 
CRAY family of vector computers, closely approximate the abstract EREW PRAM machine (see 
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Figure 2.2). They use a shared memory model, have fine-grain access to memory, have high global- 
communication bandwidth, and can hide functional and memory latencies through vectorization. 
The most important features that distinguish these machines from massively parallel processor 
machines are the high global-communication bandwidth and the pipelined memory access. Pro- 
cessors communicate to memory via a multistage butterfly-like interconnection network. As long 
as there are no memory-bank conflicts, the network can service one memory request per clock cy- 
cle for each memory pipe. Thus, the PRAM model assumption that often is cited as unrealistic, 
namely unit-time memory access, holds on vector multiprocessors as long as the algorithm can 
avoid memory-bank conflicts and hide latencies. 

Shared 
Memory 

Memory Memory 
Bank      Bank 

Memory Memory 
Bank      Bank 

Multistage Butterfly-like Network 

^ Element 
Processors 

(128) 

:•-!'. 

Physical Processors (16) 

16 physical processors x 128 vector elements 
= 2048 element processors 

Figure 2.2:    Vector multiprocessors viewed as a PRAM. Numbers are those for the CRAY C90. 

Zagha [116] proposes several vector multiprocessing programming techniques for avoiding memory- 
bank conflicts and hiding latencies. To address bank conflicts he proposes a data distribution tech- 
nique to manage the memory system explicitly. To address memory and functional-unit latencies 
he proposes that programs are written for sufficiently more virtual processors than physical pro- 
cessors. For vector multiprocessors, virtual processing allows for vectorization so that computation 
and communication can be pipelined to hide latencies. Virtual processing has been a common 
approach-for hiding latencies [109, 84]. 

Using Zagha's programming model, I implemented the PRAM algorithms by treating a vector 
processor as a SIMD (distributed memory) multiprocessor. The ith elements of the vector registers 
of length L act as the local data for the ith element processor of an L-processor SIMD machine, see 
Figure 2.2. I call the processors element processors to distinguish them from a full vector processor. 
As processors in data-parallel algorithms do not use the results of another processor in the same 
time step, there are no recurrences to worry about in the corresponding vectorized implementation. 

To amortize latencies, I attempt to keep the vector lengths long, close to the length of the 
vector registers or longer. When the work load is imbalanced, so that processors finish at different 
time steps, I use either strip-mining [91] or loop-raking [117, 22] to assign the work of several 
virtual processors to a single element processor. That is, element processor i is assigned virtual 
processors j-l + i'm strip-mining and i[n/(l-l)\ +j in loop-ranking, where i = 0,..., /- 1 and j = 
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0,..., \n/(l — 1)J -1 and I < L. As processors complete, I reassign virtual processors to the element 
processors. Extending the vectorized algorithm to vector multiprocessors is straightforward: If the 
machine is SIMD, I simply treat the p vector processors as an L x p SIMD multiprocessor and 
apply the vectorized algorithm. If the machine is MIMD, I can treat it the same way except that, 
for efficiency, I minimize the frequency of load balancing across physical processors and processor 
synchronization. 

2.2    The List-Ranking and List-Scan Algorithms 

To evaluate the performance of Blelloch/Reid-Miller parallel algorithm, I implemented several list- 
ranking algorithms. I chose algorithms that have the smallest constants because they are the most 
likely to have the best performance for practical linked-list lengths. In Section 2.6 I conclude 
that other work efficient algorithms have much larger constants than the ones I implemented and, 
therefore, would have worse performance. Below I describe the main features of the five algorithms 
I implemented. Since list-ranking and list-scan algorithms are essentially the same I generally 
describe the list-scan algorithm only. For simplicity I use integer addition as the "sum" operator. 

2.2.1     The serial algorithm 

The serial list-scan algorithm simply walks down the list storing the accumulated values of the 
previous vertices until it reaches the end of the list. From Table 1.2 we see that the CRAY C90 
serial list-scan and list-ranking times are very nearly the same. The times are similar because the 
CRAY C90 has two input ports that can bring in both the link and value data simultaneously. On 
workstations the list-ranking execution times are substantially faster than the list-scan times and 
both times depend on whether all the linked-list data can be placed in the cache or not. 

2.2.2    Wyllie's algorithm 

The first parallel list-ranking algorithm was introduced by Wyllie [115]. The algorithm uses a 
technique common to most parallel list-ranking algorithms, "pointer jumping" or "shortcutting". 
A processor is associated with every vertex and each processor repeatedly replaces its successor 
pointer with its successor's successor pointer in unison with the other processors. The new value 
for the vertex is its old value plus the value of its successor. For a list of length n and after 
[lg(n — 1)] rounds of pointer jumping, every vertex points to the tail of the list and its value is the 
sum of the values from the vertex to the tail of the list. Although this algorithm is simple and has 
an O(logn) running time, it is not work efficient since the total number of operations is O(nlogn), 
whereas the serial algorithm takes O(n) operations. 

Figure 2.1 shows the vectorized execution times of Wyllie's algorithm on one processor of the 
CRAY C90. The sawtooth shape of the curves is due to the addition of another round of pointer 
jumping whenever the value of [log(n — 1)] changes. The negative slope between a pair of teeth is 
due to the amortization of the additive constant terms over larger size lists. As one can see from 
Figure 2.1, Wyllie's algorithm quickly degrades in performance as the list lengths grow. On the 
other hand, as it scale almost linearly with the number of processors, it is faster than the serial 
algorithm when run on multiple processors on moderately long lists. 
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2.2.3 Miller/Reif random mate 

One of the simplest work-efficient parallel algorithms was devised by Miller and Reif [86, 99]. It uses 
randomization for symmetry breaking so that processors at neighboring vertices do not attempt to 
dereference their successor pointers simultaneously. Each processor flips an unbiased male/female 
coin. If it is a female and its successor is a male (a "random mate") then it "splices out" its 
successor. The processor for the successor vertex becomes idle. On each round processors splice 
out only 1/4 of the remaining vertices on average. With high probability after O(logn) rounds all 
the vertices of the list are spliced out. Finally, there is a reconstruction phase, in which spliced-out 
vertices are reintroduced in reverse order from which they were removed. The constants for this 
algorithm are greater than for Wyllie's algorithm because it needs to generate random numbers and 
perform extra communication to establish random mates with successor vertices, takes on average 
4 attempts to splice out each vertex, requires load balancing, and has both a reduction phase and 
a reconstruction phase. 

I implemented this algorithm using the vector units on a single processor of the CRAY C90. 
My version removes idle processors on every round by compressing the remaining vertices into 
contiguous vector elements (an operation I call "pack"). This algorithm is 20 times slower than 
Blelloch/Reid-Miller algorithm and 3.5 times slower than the serial algorithm for long linked lists. 

2.2.4 Anderson/Miller random mate 

Anderson and Miller [6, 99] modified the above algorithm so that it avoids load balancing (packing). 
The p processors are assigned the work of splicing out a queue of n/p vertices. At each round a 
processor attempts to remove one vertex in its vertex queue. After a processor splices out a 
vertex, on the next round it attempts to splice out the next vertex in its queue. In this simple 
way processors remain busy without load balancing. When there are fewer than p vertices left, it 
compresses these vertices in memory and applies Wyllie's algorithm. Finally, there is reconstruction 
phase to reintroduce spliced out vertices. 

To determine if a processor can splice out a vertex, all the vertices are set to female, except 
those at the top of the queue. These vertices are assigned male or female by a random toss of a 
coin. A vertex can be spliced out if it is a male pointed to by a female. If the coin is unbiased then 
in the initial rounds the processors remove on average up to p/2 vertices each round. But as the 
processing proceeds, the average number of processors that can remove a vertex each round drops 
to 1/4 of those left. Anderson and Miller show that if the number of processors, p, is n/logn then 
after a little over 4 log n rounds p vertices are left. 

I attempted to optimize the Anderson/Miller algorithm to see how well it could perform. The 
most important optimization was changing the coin bias so that the probability of assigning male 
was 0.9. The effect was that almost 90% of the active processors could splice out on every round, 
even when the total number of remaining vertices was small. This high rate continued because 
as some processor queues completed and the remaining queues continued to have several (female) 
vertices on them. The result was to reduce the number of rounds and the run time by about 40%. 
Switching to Wyllie's algorithm was not useful because the number of rounds needed to complete 
without Wyllie's was not much greater than with Wyllie's. However, I did switch to the serial 
algorithm when only a few queues remained. This result is in contrast to that found by Hsu and 
Ramachandran[63] on the MasPar MP-1. They found that switching to Wyllie's algorithm greatly 
reduced the number of rounds needed. The difference is that they had 16,383 processors and were 
using an unbiased coin whereas I had only 128 element processors and was using a biased coin. For 
long lists the Anderson/Miller algorithm is three times faster than the Miller/Reif algorithm, but 
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still 7 times slower than Blelloch/Reid-Miller algorithm and 35% slower than the serial algorithm. 
However, because it scales almost linearly, for long lists it is faster on multiple physical processors 
than the serial algorithm or Wyllie's algorithm. 

2.2.5    Blelloch/Reid-Miller sublist algorithm 

Many other work-efficient PRAM algorithms have been developed for list ranking. Most use 
contract-scan-expand phases and address two considerations. One is how to find vertices on which 
to work to keep all the processors busy and the second is how to break symmetry so that two 
processors are not working on neighboring vertices [5]. I break symmetry by randomly dividing up 
the linked list of length n into m + 1 sublists that can be processed independently and in parallel. 
I briefly describe the three phases of the algorithm below. 

Phase 1 Randomly divide the list into m + 1 sublists. Traverse each sublist computing the "sum" 
of the vertex values. Form a new linked list of length m + 1 that links the sublists sums in 
the order the sublists appear in the original list. 

Phase 2 Find the list scan of the reduced list found in Phase 1. These values become the scan 
values for the heads of the sublists. 

Phase 3 Traverse each sublist computing the list scan of each vertex as the sum of the value and 
list scan of the previous vertex. 

Phases 1 and 3 are parallel. I pick m < n/logn so that Phase 1 reduces the problem size by at 
least a factor of log n. The list scan in Phase 2 can be done recursively for large m, using Wyllie's 
pointer jumping technique for moderate size m, or serially for small m. For small m serial list scan 
works best because it avoids the overhead associated with the parallel versions (see Figure 2.1). 
Wyllie's algorithm performs best on moderate size lists where it can take advantage of vectorization 
and multiprocessing and where lgn is small. For large m I use the sublist algorithm recursively, 
until the number of sublists becomes small enough to use either the serial or Wyllie's algorithm. I 
empirically determined when I should switch between algorithms. 

There are two problems with the sublist algorithm that make it theoretically inferior: 

• The sublists lengths vary widely, from a small fraction of the mean ^, namely ^-ln ^\ on 
average, to a large factor of the mean, namely ^ In(2m+ 2) on average. Thus, the processors' 
work is very imbalanced. 

Since the expected length of the longest sublist is approximately —In(2m + 2) the parallel 
running time can be no better than that, i.e., 0(^ + ^ log m),m < n/logn. In contrast, 
there are many parallel algorithms that have an 0(- + log n) running time. 

I ameliorate both problems by requiring m to be much greater than the number of processors, 
p. In this way a processor is responsible for several sublists, namely (m + l)/p. Periodically I 
perform load balancing to regroup the lists, which addresses the first problem. When p < m/logm 
the running time is dominated by n/p and the length of the longest sublist is not a problem. 

The primary advantage of the sublist algorithm is that it is both work efficient and has small 
constants. The algorithm is fully vector parallel and scales almost linearly with the number of 
processors. We can expect, however, some degradation in performance as the number of processors 
increases, because the available memory bandwidth per processor decreases. Figure 2.3 shows the 
speedup relative to one processor for various size lists. 
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Figure 2.3:     Relative speedups of Bleloch/Reid-Miller list-scan algorithm on the CRAY C90. 

2.3    Blelloch/Reid-Miller Algorithm on a Vector Processor 

This section describes the Blelloch/Reid-Miller list scan (for a more detailed description see the 
chapter appendix 2.8). In the following description I assume that there is one virtual processor for 
every sublist. By using strip-mining, the (vector) element processors are assigned the work of an 
equal number of virtual processors. I represent the linked list as a pair of arrays. The value array 
contains the value of each vertex of the list and the link array contains the index of the next vertex 
in the list. The tail of the list is a self-loop, i.e., the link at the tail is the index of the tail vertex. I 
used the C programming language and the standard CRAY C compiler on a CRAY C90. The time 
equations I give in this section are in CRAY C90 clock cycles (4.2 nsec). 

2.3.1    Initialization 

Each virtual processor except one designated one, P0, picks a random vertex in the linked list to 
be the tail of a sublist and makes the successor vertex the head of its sublist. P0 takes the head 
of the whole list as its sublist head. Then each virtual processor sets the sublist tail to a self loop 
and initializes its sublist sum to zero, where zero is the identity of the list-sum operator. Figure 2.4 
shows the linked list that is the input of the list-scan algorithm and the result of the initialization 
step. 

It is possible that two virtual processors pick the same random position at which to break the list. 
Then the two processors duplicate each other's actions and cause contention. To remove duplicate 
random numbers the processors can have a competition among themselves. Each processor writes 
its index at its random location and waits for all the processors to complete their writes. Then 
each processor reads the index at its random location. If the index is not its own it knows that it 
is a duplicate processor and can drop out of the-computation. 
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Figure 2.4: List scan initialization. The top of the figure shows the initial linked list with its values at 
each vertex. The bottom of the figure shows the results of the initialization step. The linked list is divided 
into 3 sublists, one for each processor, and each sublist is terminated with a self loop. Processor Po sets 
its sublist head, H, to the head of the whole list. Each remaining processor, Pi and P2, saves two values: 
its chosen random position, R, and the successor of the random position in the original linked list, which 
becomes the head of its sublist, H. Each processor also initializes its sublist sum, S, to zero, the identity of 
the scan operator. 

The standard model [62] for the performance of vector operations on vectors of length n is: 

T{n) = te(n + n1/2), 

where te is the incremental time per vector element and r^/2 is the vector half-performance length 
(the vector length that achieves half the peak performance). Based on this model I found that the 
number of clock cycles needed for Initialize to set up m + 1 sublists is: 

Tlnitiaiize(m + 1) = 22(m + 1) + 1800. 

2.3.2    Phase 1 

Phase 1 alternates between summing the values along the links of the sublists and load balancing 
(vector pack). Because of the predictable sizes of the sublists lengths I can determine how many 
links to traverse between load balancing steps and adjust this number as the procedure progresses 
(see Section 2.4). Figure 2.5 shows the status after the processors have found their sublist sums. 

To illustrate how streamlined the list traversal is, I show the code written in pseudo-C. 
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Figure 2.5:    Results of computing the sum of each sublist in Phase 1. Each processor traverses its sublist 
until it reaches the sublist tail, T, and accumulates the "sum" of the values along the sublist, S. 

7 
7 

InitiaLScan  (vp,  11, relinks)  { 
/* vp — virtual processor data 
/* 11 — linked list 
/* n_links —number of links to traverse */ 
for  (j  = 0; j  < n_links;  j++)  { /* Traverse n_links links of each sublist 

for  (i = 0;   i < vp->n;   i++)  { /* Vectorized loop 
vp->sum[i]  += ll->value[vp->next[i]] ; /* Gather value and increment sum 
vp->next[i]  = ll->next [vp->next [i]] ;   /* Gather successor link 

} 

*/ 
7 
*/ 
*/ 

} 
} 

The number of clock cycles needed for the inner loop is: 

TlnitialJ3can(aO = 3.4a; + 35, 

where x is the number of sublists remaining in the computation. I use the variable x, as opposed 
to m + 1, to indicate that the value of x changes during the course the execution of the algorithm. 

Notice that all the loop does is gather the data necessary to compute the sum and store the 
results; there are no conditional tests or additional computation. To avoid conditional tests Initial- 
ization destructively set the sublist tail values to zero. In this way, InitiaLScan can repeatedly 
add the tail value without changing the sum. Because this loop (and the corresponding one in 
Phase 3) traverses every link in the linked list the time of this loop dominates the overall time 
and every economy is critical. For list ranking, I was able to improve the performance of the loop 
further by reducing the number of gather operations to one, which is important because the CRAY 

C90 can only perform one gather or scatter operation at a time. One gather is sufficient because 
I encode the link and value data for a vertex into a w-b\t integer value, which I can do as long as 
the list length (and therefore the maximum rank) is no more than 2WI2. 

To load balance, the sum and tail indices for the completed sublists are saved and the incomplete 
virtual processor data are packed into contiguous array locations. The number of clock cycles needed 
to load balance x sublists is: 

Tlnitial_Pack(aO = 8.2z + 1200. 

Once the virtual processors have reached the tails of their sublists, they create the reduced list 
of sublists sums. Each processor knows the tail of the previous sublist because it is the random 
position the processor chose during initialization. By writing the virtual processor's index into the 
tail of the previous sublist and then reading the index at the tail of its own sublist, the processor 
determines the virtual processor index of its successor's sublist. This index becomes the successor 
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link from its sublist sum to its successor's sublist sum and forms a new shorter linked list (see 
Figure 2.6). For example, consider the tail of the first sublist in Figure 2.6. Processor 2 writes 2 in 
the tail of the first sublist. Then Processor 0 reads the 2 at the tail of its sublist. Thus, Processor 
0 links its sum to the sum at Processor 2. A processor can determine whether its sublist is the 
tail sublist because no processor wrote its index in the tail. Thus, the tail sublist processor, P\ in 
Figure 2.6, sets its successor link to its own index. 

proc: 

list: 

Figure 2.6: Creating the reduced list of sublist sums during Phase 1. Each processor writes its index at its 
random position in the linked list, R, and reads the index written at the tail of its sublist, T. This index is 
the index of the processor with the successor sublist. PI finds no index at the tail of its sublist and therefore 
is the tail sublist. 

The number of clock cycles needed to create the reduced list of length m + 1 is: 

TFindJ3ubiist_List(ra + 1) = U(m + 1) + 650. 

2.3.3    Phase 2 

Depending on the size of this new linked list, the algorithm finds the list scan of the reduced linked 
list recursively, using Wyllie's algorithm, or serially. Note that in this phase both the list ranking 
and list scan algorithms find the list scan and not the sum as in Phase 1. Figure 2.7 shows the 
result of Phase 2 of the algorithm. 

proc: 
Po 

R H T S p? 
R H T S Pi 

R H T V 
• • • 0 . • • • 3 • • • * * 

Figure 2.7:    List scan on the reduced list of sublist sums after Phase 2. 

2.3.4    Phase 3 

The scan value found in Phase 2 becomes the scan value for the head of a virtual processor's sublist, 
see Figure 2.8. 

proc: 

list: 

Po 
R    H T s 
• / f 0 

0  —«• i 

^ 

R    H    T    S R    H    T    S 

Figure 2.8:    The final scan values after Phase 3. The scan values for the heads of the sublists are the scan 
values of the reduced list found in Phase 2. Phase 3 finds the remaining scan values. 
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As in Phase 1 each virtual processor alternates between traversing its sublist and load balancing. 
But this time it finds the scan of each vertex as the sum of the previous vertex scan and value. The 
number of clock cycles needed to traverse one link of the x sublists remaining in the computation 

7Fmal-Scan(a:) = 4.6a: + 28, 

and to load balance the x sublists is: 

TFinal Jack(«) = 7.2z + 950. 

2.3.5    Restoration 

Finally, each virtual processor reconnects the sublists to form the original linked list, using the 
values saved during initialization. The number of clock cycles required to reconnect m + 1 sublists 
is: 

2Restore_List(™ + 1) = 4.2(m+ 1) + 300. 

2.4    Analysis of the Algorithm 

In Phases 1 and 3 the algorithm periodically performs load balancing to removed completed sublists 
from the computation. If it load balances too frequently it removes none or only a few sublists, and 
when there are many sublists load balancing is expensive. If it does not load balance often enough it 
may have many processors performing needless work, repeatedly chasing completed sublists' tails. 
To determine when are good times to load balance we first need a better understanding of what the 
expected distribution of the sublists lengths is. I derive the expected distribution in Section 2.4.1. 
In Section 2.4.2 I next determine the overall cost of performing the algorithm, given the timing 
data in Section 2.3. In Section 2.4.3 I used the expected distribution to minimize the execution 
time of the algorithm, given the number of sublists and number of times to load balance. Finally, 
I explain how I compute the parameters values to minimize the overall execution time. The main 
theorem is: 

Theorem 2.1 The list-ranking algorithm has expected time 0(- + % log m) on p processors, when 
m < n/logn. 

2.4.1    Analysis of sublist lengths 

In this section I show that the distribution of the lengths of the sublists is approximately a negative 
exponential distribution, when n and m are large. First consider the following situation. Let 
X!,...,Xm be m random numbers in the range (0,1). For truly random numbers ProbpT, = 
Xk) = 0 for j ^ k. Therefore, the numbers partition (0,1) into m+1 subintervals. Let X(1),.. .X(m) 

denote the Xs ordered by their sizes from smallest to largest. 

Proposition 2.2 (Feller [45]) IfXu...,Xn are independent and uniformly distributed over the 
range (0,1) then as m -» oo the successive intervals in our partition behave as though they are 
mutually independent exponentially distributed variables with E[X<j+1\ - Xij\] 

TO ' 
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In our case, we are choosing m random positions in a list of length n. If n >> m, n -> oo, 
and m -* oo then the lengths of the sublists tend to behave as mutually independent exponential 
variates with expectation ^. That is, if L is a sublist length, then 

Prob{L>:r}«e-m3;/n = a(:c). (2.1) 

We can estimate the expected length of the jih shortest sublist by setting a{x) - (m-j + .5)/(m+l) 
and solving for x. This estimate seems to be reasonable for n and m as small as n > 1000 and 
m > 100. The expected length of the shortest sublist is: 

m + 1 
E[L(0)] 

n 
In 

m ,m + .5 

and the longest sublist is: 
ft 

E[£(m)] ~ —In(2m+ 2). 

Figure 2.9 shows the expected length of the jth shortest sublist for several values of m when 
n = 10,000 and compares it to some actual trial data averaged over 20 samples. Notice that as 
m increases the expected length of the longest sublist decreases and there is less variation in list 
lengths. Therefore, to reduce the parallel running time we want to make m large. However, as m 
increases so do the costs due to load balancing, initialization, and Phase 2. 

m = 250 

sublist index = j 
Figure 2.9: The function curves are the expected length of the jth shortest sublist when n = 10000 for 
several values of m, the number of sublists. The observed lengths were found by taking 20 samples of dividing 
a list of size n = 10000 into m sublists randomly. The error bars show the minimum, average, and maximum 
lengths of the jth shortest sublists of the 20 samples. 

2.4.2    Cost of the algorithm 

Using the timing equations of each piece of the algorithm given in Section 2.3 we can determine 
the cost of the complete algorithm, assuming we know the exact lengths of the sublists and when 
to perform load balancing. Let Si be the total number of links traversed in each list before the load 
balancing for the ith time. Let g(x) be the expected number of sublists that have length greater 
than x. From Eq. (2.1) we get 

g{x)   =    (m+l)x Prob(L> x) 

«    (m+l)e-mx/". (2.2) 
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The dotted line in Figure 2.10 shows g{x) when n = 10000 and m = 200. The «-axis is the 
sublist length and the y-axis is the number of sublists with that length. You can think of each 
sublist as being laid out from left to right and placed one above the other from longest to smallest, 
each starting at x = 0. That is, the y-axis is the number of sublists that are still active in the 
computation, namely the vector lengths of the computations, while the «-axis is the number of 
links traversed in each list. As we proceed from left to right, we are traversing links on a vector 
of length equal to the height of the step function. Every time we load balance (at the corner of a 
step) the vector length decreases. The area under the step function in Figure 2.10 is the expected 
total number of links traversed in either Phase 1 or Phase 3. If 5, = i then the area under the 
step function would be n, the area under the curve g(x). Our aim is to minimize the area under 
the step function that is above the dotted line, while keeping the cost of load balancing down. The 
cost of load balancing is proportional to the sum of the heights of the steps in the step function. 
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Figure 2.10: The expected number of active sublists. The dotted function is g(x) the expected number of 
sublists that have length greater than x, where n = 10000 and m = 199. If we load balance 11 times the 
expected execution time on the CRAY C90 is minimized by load balancing at the vertical lines. The step 
function shows the expected number of sublists that are currently active at every link traversal. The drop 
in step size is the expected number of sublists that completed since the last time load balancing was done. 

From the equations for each part of the algorithm given in Section 2.3, the expected number of 
CRAY C90 cycles for Phases 1 and 3 of the algorithm is: 

Tp1+P3 = \J2(Si+1 - Si)(a ■ g(Si) + b)J + (f> • g(Si) + d) j + e(ro + 1) + /, (2.3) 

where TScan(x) = ax + b, TPack(x) = ex + d, and Tother(z) = ex + f, and g(Si) is the expected 
number of sublists remaining after traversing Si links in each list. The first summation is the total 
time to traverse the links in Phases 1 and 3, the second summation is the time for load balancing in 
Phases 1 and 3, and the final e(m + 1) + / is the time for creating the sublists, forming the reduced 
linked lists from the sublist sums, and restoring the linked list to its original form after the final 
phase. 

2.4.3    Minimizing the time given fixed parameters 

Consider n, m, and / fixed. We want to minimize the execution time with respect to S0, Si,S2,..., Si, 
where S0 = 0 and S{,i > 0, is the number of links traversed on each sublist before load balancing 
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for the ith time. We can minimize Eq. (2.3) by taking partial derivatives for each 5,- and setting 
the partial to zero to obtain a set of / simultaneous equations: 

c Q     9{Si-i) - g{Sj)     c_ 
*~>i+l      —     <->i It o \ 

g'(Si) a 

_    a   ■ 3{Si-i) - g{Sj)      c 

~ Si+    Wo    "«' (2-4) 

using g'(Si) = — ^g(Si). That is, if we know 5,_i and Si then we can determine Si+i- Since we 
know So = 0 and if we know 5j we can compute 52,..., 5/ iteratively. 

Notice in Figure 2.10 that the S;'s become increasingly further apart for larger Vs because the 
rate sublists complete slows down over time. The factor c/a in Eq. (2.4) reflects the relative cost 
of load balancing and traversing links. If we increase c and keep the number of times we load 
balance constant, load balancing would occur less frequently during the initial iterations and occur 
more frequently during later iterations. Initially load balancing is expensive because the vector 
lengths are long and becomes less expensive as vector lengths shorten. As we increase c relative 
to a eventually we find that the execution time is reduced by decreasing the number of times we 
load balance even though we increase the total number links we traverse. In the next section we 
consider how to determine the best value for Si which in turn determines the number times to load 
balance. 

We can simplify Eq. (2.3) by using Eq. (2.4) to substitute for S;+i - 5,-. That is, 

/-i 
Y,(Si+i-Si)(a-g(Si) + b) 
t=0 

z-i ;-i 
=   aSig(So) + a ^(S;+i - Si)g(Si) + 6^(5i+1 - Si) 

t'=l !=0 
/_1   n r 

=   aStim + 1) + aJ2[-(g(Si-i) - g(St)) - -g(Si)] + bS, 
i=l 

l-l 

«   aSi(m+ 1) + an — cJ}Tig(Si) + bSi. 
j=i 

Thus, the expected time for Phases 1 and 3 is: 

TPI+P3{SI, ...,Si)&an + b—\nm+ (aSi + c + e)(m + 1) + Id + /, 
m 

since E[5/] « ^ In m. 
Because the time for the second phase is no worse than the serial time (44 cycles/vertex) and 

given the timing data in Section 2.3, the expected number of clock cycles on a one processor CRAY 

C90 for the algorithm is: 

T(n) « 8n + 62— In m + (85i + 96) (m + 1) + 2150/ + 2750. (2.5) 

where m + 1 is the number of sublists, Si is the number of links traversed before load balancing 
the first time, / is the number of times load balancing is done and is a function of S\, m, and n. 
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2.4.4    Overall vector performance 

From the previous discussion we have a way to determine when we should load balance, as long as 
we know the length of the whole linked list, n, the number of sublists, m, and the number of links 
traversed before load balancing the first time, Si. However, all we know is the length of the whole 
linked list, namely n. We need to find good choices for TO and Si. My approach was to estimate the 
running time of the algorithm using Eq. (2.3) for various values of TO, SX and n, and use Eq. (2.4) 
to determine the corresponding S2,.. .,S/ values. Then, for each value of n I found values of m 
and Si that minimized the running time within about two percent. Finally, I fitted functions to 
TO vs. n and Sx vs. n. It appears that m and Si are approximately cubic polynomials of log n. I 
used these fitted polylog functions in my implementation to determine TO and Si given n, and used 
Eq. (2.4) to find successive values of S;. When I used these estimates of TO and Si, I found that 
Eq. (2.3) accurately predicts and Eq. (2.5) overestimates the actual execution time on one CRAY 
C90 vector processor. 

2.5    Vector Multiprocessor List Scan 

To extend the algorithm to multiple vector processors I divided the virtual processors equally 
among the physical processors and let vectorization proceed on the data assigned to the physical 
processors. The CRAY C compiler makes parallelizing relatively easy. I modified loops to be tasked 
loops with compiler directives that direct the compiler to divide the loops into equal size chunks, 
one chunk per processor, and to vectorize the chunks within the processors. Ignoring the time for 
synchronization, from Eq. (2.3) the expected vector-parallel time for the algorithm is: 

J-i z-i 
T(n)   «   52(Si+1 - Si)(ag{Si)/p + b) + J^(cg{Si)/p + d) + e(m + l)/p + f + TP2(m+ 1) 

«=o i=o 
' n      n 

~   0 1--\ logTOj, ifm<n/logn. (2.6) 

I derived Eq. (2.6) using an analysis similar to that used in the previous section and that the time 
for Wyllie's algorithm in Phase 2 is TP2 < 0(n/p + \ogn) if TO < n/logn. From Eq. (2.6) we get 
Theorem 2.1. 

Data parallel algorithms assume that each data parallel step is synchronized, whether or not it is 
necessary. However, the most the processors need to synchronize is after every innermost vectorized 
loop. If we treat the vector multiprocessor strictly as an I X p multiprocessor then, in particular, 
the processors need to synchronize each time Phases 1 and 3 load balance, so that load balancing 
can proceed globally across the physical processors. Instead, the implementation assigns virtual 
processors to physical processors once at the beginning and only load balances locally within each 
physical processor. In this way each processor completes all of Phase 1 and Phase 3 independently 
of the other processors. In effect, the processors synchronize only a constant number of times 
and do no load balancing across processors. Eliminating synchronization avoids needless delays at 
each synchronization point. Avoiding global load balancing across processors is important because 
most compilers do not know how to parallelize a pack operation across processors and global load 
balancing requires extra communication. 

Because the algorithm uses randomization, significant load imbalance is unlikely when the 
processors load balance only locally. Even if an imbalance should become a problem as the procedure 
progresses, only one across-processor load balance should be necessary. My results are excellent 
without any global load balancing. 



26 CHAPTER 2.   LIST RANKING AND LIST SCAN ON THE CRAY C90 

Unfortunately, to tune the parameters m and Si we need to minimize for every possible number 
of processors. For a highly or massively parallel machine, tuning the parameters for every number 
of processors would not be practical. But since the CRAY C90 has 16 processors there are only 16 
sets of equations. I tuned the parameters for 1, 2, 4, and 8 processors, resulting in the list-scan 
asymptotic performance of 7.4, 3.9, 2.0, and 1.1 clock cycles per vertex, respectively, where a clock 
cycle is 4.2 nsec. The asymptotic times for list ranking are 5.1, 2.6, 1.4, and .75 clock cycles per 
vertex, respectively. Figure 2.11 shows a graph of the list scan execution times in nanoseconds. 
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♦■ ° 2 processors 
*- - * 4 processors 
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64K    512K     4M      33M 
List length 

Figure 2.11:    Time per vertex for list scan on 1, 2, 4, and 8 processors of the CRAY C90. 

2.6    Other work-efficient list-ranking algorithms 

On one CRAY C90 vector processor the sublist algorithm takes about 7.4 clock cycles per vertex 
asymptotically to find the scan of a linked list. If other algorithms are to be competitive, they must 
be able to use no more than 7.4 cycles per vertex on average. Below I discuss some other deter- 
ministic algorithms that have been described in the literature. Except for Wyllie's pointer-jumping 
algorithm on short linked lists I conclude that other algorithms are unlikely to be competitive. 

Cole and Viskin devised a parallel deterministic coin-tossing technique [38] that they used to 
develop an optimal deterministic parallel list-ranking algorithm [39, 9]. This algorithm breaks the 
linked list into sublists of two or three vertices long (the heads of the sublists are called 2-ruling sets); 
reduces the sublists to a single vertices; and then compacts these single vertices into contiguous 
memory to create a new linked list. It recursively applies the algorithm to the new linked list until 
the resulting linked list is less than n/logn, at which point it applies Wyllie's algorithm. In the 
final phase it reconstructs the linked list by unraveling the recursion in the first phase and filling in 
the rank values of the removed vertices. The algorithm runs in O (log n log log n) parallel time and 
uses 0{n) steps. Later they modified their algorithm to give a O(logn) time optimal deterministic 
algorithm [41, 111]. The problem is algorithms for finding 2-ruling sets that give either of these 
time bounds are quite complicated and have large constants. 

Cole and Viskin also developed the first O(logn) optimal deterministic list-ranking algorithm 
based on assigning processors to jobs and using expander graphs [40]. Its constants are far too 
large to be practical. In addition, they give a much simpler 2-ruling set algorithm that is not work 
efficient but has smaller constants (see [9]). Because it is not work efficient and its constants are 
larger than Wyllie's or ours, I chose not to implement it. 

Anderson and Miller combined their randomized algorithm with the Cole/Viskin deterministic 
coin tossing to get an optimal O(logn) time deterministic list-ranking algorithm [5]. As with their 
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randomized algorithm, the processors are assigned logn vertices to process. On each round each 
processor executes a case statement that either breaks symmetry, splices out a vertex in its queue, 
or splices out a vertex at another processor's queue. To break symmetry it finds a log log rc-ruling 
set. Finding log log n-ruling sets are much simpler (0(1) time) than finding 2-ruling sets (O(logn) 
time with large constants). But because each round involves a nonparallel three way case statement, 
where each case needs to be completed by all the processors before the next case can be executed, 
its constants are also much larger than ours. 

The problem with these work-efficient algorithms is that on each of the O(logn) rounds, they 
attempt to to find a large number of, at least n/logn and as many as n/2, nonadjacent elements 
in the linked list to maximize the parallelism in the algorithm. In contrast, the sublist algorithm 
has only few symmetry breaking rounds, and finds only a moderate number of such elements each 
round. Thus, the algorithm greatly reduces the overhead associated with symmetry breaking. 

2.7    Conclusions and Future Directions 

In this chapter I described a new parallel algorithm for list ranking and list scan and its imple- 
mentation. The implementation is surprisingly fast, especially when compared with the limited 
speedups of other implementations of pointer-based algorithms. The key to the success is twofold. 
First, I was willing to sacrifice fast asymptotic depth for reduced parallel work, only a small con- 
stant factor greater than the serial work. By reducing the constants in the work, my algorithm 
performs better than other work-efficient algorithms, which have larger constants. Second, I used 
hardware with the highest-performance memory system available, and programmed it with virtual 
processing to hide latency. Because list ranking is so memory bound, its performance is directly 
related to the bandwidth of the memory system. Even though vector supercomputers, such as the 
CRAY C90 are becoming less common, there is evidence that multiprocessor systems are moving 
to higher band widths and reduced overhead. Both small constants and high bandwidth are nec- 
essary for good performance. High bandwidth is not sufficient because the algorithms with even 
moderate-size constants are not much better than the serial implementation as shown in Figure 2.1. 
Small constants are not sufficient because reduced bandwidths results in longer parallel times, as 
indicated in [82] and seen in the reduced speedup of my algorithm for larger numbers of processors 
(see Figure 2.3). 

As with any implementation, there are a multitude of possible modifications and enhancements 
that could improve its performance. A large part of the performance loss is due to short vector 
lengths. As sublists drop out of the computation the vector lengths shorten. Not only are the 
vector lengths short, the number of iterations remaining with short vector lengths can be relatively 
large, since the longest sublists can be much longer that the other sublists. Short vectors are 
inefficient because of the latency due to filling the vector pipelines. John Reif suggested I use over- 
sampling to further subdivide the remaining long sublists when the vector lengths become short. 
The cost, however, of maintaining which subdivisions remain relevant would slow down the two 
major list-scan loops of the algorithm and likely slow down the overall performance. 

Finally, the question still remains whether having a fast list-ranking implementation helps in 
making other pointer-based applications practical. If so, I may have opened up major classes of 
PRAM algorithms that can have reasonable implementations. In addition, it also would be inter- 
esting to see whether my analysis and techniques can be applied to other pointer-based algorithms. 
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2.8    Vector Implementation of List Scan 

I implemented the list scan algorithm on a CRAY C90, a vector multiprocessor. Vector multiproces- 
sor machines consist of multiple scalar processors, each augmented with a bank of vector registers, 
pipelined functional units, and vector instructions. The functional units divide their operation into 
several stages so that the clock speeds can be increased. On every clock cycle another element from 
the vector register enters the pipeline of the functional unit while one results exits the pipeline. 
The delay between the time the first operands enters the pipeline until the first result leaves the 
pipeline is call the latency or start up time of the functional unit. If the functional units are fully 
pipelined, they can accept new operands every clock cycle. Multiple functional units can process 
data simultaneously, and if the hardware permits, the results of one functional unit can be chained 
directly to the input of another unit. Thus, to execute operands of length n on a fully pipelined 
functional unit with start up time s takes s+n clock cycles, where n < v, the vector register length. 
To hide the latency s we want n as close to v as possible. 

The vector multiprocessors are typically connected through a multistage interconnection net- 
work to a common memory. Memory is composed of multiple memory banks that can access 
different addresses in parallel using a single global address space. Once a memory bank has been 
accessed it cannot be access again until there is a delay, called the cycle time. Usually the memory 
subsystem is optimized for accessing sequential memory addresses. That is, banks are fully inter- 
leaved so that successive addresses are on successive memory banks and the number of memory 
banks is greater than the cycle time. In this way, sequential memory addresses can be accessed one 
element per clock cycle. Load operations load data to vector registers from memory and and store 
operations store data to memory from vector registers. These operations use consecutive (stride = 
1) memory locations or use every kth element (stride = k) of memory. Bad choices for k can result 
in accesses to the the same memory bank at a rate higher than the cycle time and memory-bank 
conflicts occur, causing memory stalls. Memory can also be accessed at arbitrary locations using 
an index vector. Often such loads are called gather operations and such stores are called scatter 
operations. Because of memory-bank conflicts, each element during a gather or scatter typically 
is accessed at a rate lower than the machine clock cycle (about 2 clock cycles/element for random 
access patterns on the CRAY Y-MP machines). In addition to cycle-time delays, there are access- 
latency time delays. The latency for a load is the time to get the first word from memory to the 
register and often is much greater than the latency of the functional units. However, for CRAY 

Y-MP machines-memory access latencies are about the same, but are getting longer as the ma- 
chines get bigger. The CRAY Y-MP machines have two read ports and one write port to memory. 
Thus, they can perform two vector load operations and one vector store operation concurrently. 
The scatter/gather hardware, however, can service only one scatter or gather operation at a time. 
But a gather operation can run concurrently with one load and one store, and a scatter operation 
can run concurrently with two loads. 

To implement a PRAM algorithm on vector multiprocessor, I treat the ith element in the vector 
registers as the data for ith element processor of a SIMD machine. Recall, I call the vector element 
an element processor to distinguish it from a full vector processor. Any data parallel algorithm can 
be vectorized and parallelized by having an element processor do the work of a virtual processor 
in the algorithm. For example, on a CRAY C90 each processor has a vector-register length of 128 
and there are 16 processors. Therefore, it has 2048 element processors. However, by using strip 
mining [91] or loop raking [117, 22], a single element processor is assigned the work of several virtual 
processors. 

I used the C programming language and the standard CRAY C compiler on a CRAY C90. 
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Because many of the vector operations use indirect addressing, I needed to give compiler directives 
to get the compiler to vectorize the loops; the only portion that is not vectorizable is the serial list 
scan in Phase 2. I attempted to reorder the statements within vectorized loops to fill the multiple 
functional units for concurrent operations, to avoid contention between input/output memory ports 
and the gather/scatter hardware, and to avoid write after read dependencies [55]. With nested 
loops I unrolled the inner loop up to eight times to do eight iterations of the outer loop to avoid 
unnecessary loading and storing of vector registers on each execution of the inner loop. Chaining is 
also possible within loops. I made no attempt to avoid memory bank conflicts. However, since the 
algorithm chooses random positions for the heads of the sublists, systematic memory-bank conflicts 
are unlikely. 

Below I give pseudo-C code to illustrate my implementation of the single vector-processor 
version of my list ranking algorithm. I use four structures containing sets of vectors to simplify the 
presentation. However, in the actual implementation I use individual vectors. For each subroutine 
I discuss the vectorization and present the C-pseudo code. 

List_Scan The pointer 11 points to a linked-list structure that contains a pair of arrays, where 
one array ll->next gives the indices of the successive nodes in the linked list and the other array 
ll->value gives the values of the nodes. The scalar ll->head is the index of the head of the linked 
list and the scalar ll->n is the length of the linked list. The linked list terminates with a self loop. 
The resulting list scan is stored in the array ll_sum. 

The pointer vp points to a structure that maintains the local data for the currently active 
virtual processors. Periodically, the algorithm packs the arrays as processors drop out. The array 
vp->next provides the current next indices for the sublists, the array vp->sum maintains the current 
sums of the sublists, and array vp->id contains the virtual-processor identifiers. The scalar vp->n 
is the number of currently active virtual processors. 

The result of Phase 1 is a reduced linked list, to which rl points. It has the same fields as 11. 
Finally, the pointer si points to a structure that saves information about the sublists. The 

random indices, which are the tails of the previous sublists, are in sl->random, the values of these 
tails are in sl->value, and the successor links at these tails, namely the heads of the sublists, are 
in sl->head. When a virtual processor reaches the tail of its sublist it saves the index of the tail 
in the array sl->tail and the sum of the sublist in reduced linked list value array rl->value. 

List_Scan, shown below, starts by calling Initialize, which sets up the sublists and returns 
the number of sublists it creates. In Phase 1 List_Scan alternates between traversing each sublist 
and packing out completed sublists until no sublists remains. InitialJScan traverses s[l] links 
of each sublist, summing the values at each node (in Section 2.4.3 I discussed how to determine the 
values of s[l]). Then Initial_Pack load balances the remaining lists by removing the completed 
sublists from vp. It saves the results of the completed sublists in si and removes them from 
vp by packing the remaining sublists to the initial portion of the arrays. By packing the arrays 
it effectively reassign virtual processors to element processors. Finally, Initial_Pack returns the 
number of incomplete sublists remaining. After all the sublists have completed, Find_Sublist_List 
forms a linked list, rl->next, of the sublist sums, rl->value. In Phase 2 it finds the list scan of this 
linked list by calling either List_Scan recursively, the vector multiprocessor routine Wyllie, or the 
serial routine Serial_List_Scan. It puts results in the virtual processor array vp->sum. Phase 3 is 
like Phase 1 and proceeds by alternating between traversing the sublists for s [1] nodes and packing 
out finished sublists until no sublists remain. Finally, Restore_List puts back the original links 
and values at the tails of the sublists. All the routines are vectorized except Serial_List_Scan. 
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List _Scan (ll-sum,  11) 

{ 
/* PhaseJL */ 
1 = 0; 
vp->n = rl->n = Initialize(vp, si, 11); 

rl->head = 0; 
while  (vp->n > 0)  { 

Initial_Scan(vp,  11,  s[l++]); 
vp->n = Initial_Pack(vp,  si,  11, rl); 

} 
Find_Sublist_List(rl, 11,  si); 

/* Initialize the pack counter */ 
/* Initialize the virtual processors */ 
/* Head of rl's list is index 0 */ 
/* Find the sublist sums */ 

/* Links the sums into a linked list    */ 

/* Phase_2 */ 
if (sl->n > wyllie_cutoff) 

List_Scan(vp->sum, rl); 
elseif (sl->n > serial_cutoff) 

Wyllie(vp->sum, rl); 
else 

Serial_List_Scan(vp->sum, rl); 

/* Phase_3 */ 
1 = 0; 
vp->n = sl->n; 
while  (vp->n > 0)  { 

Final_Scan(ll_sum, vp,  11,  s[l++3); 
vp->n = Final-Pack(ll_sum,  vp,  si,  11); 

} 
Restore_List(sl,  11) 

/* Reset the pack counter */ 
/* Reset number of virtual processors*/ 
/* Find the scan of the sublists */ 

/* Restore values at sublist tails 

} 

Initialize: To avoid having to check whether a processor has reached the end of a sublist at every 
pointer dereference, at the tail of each sublist Initial_Scan destructively sets ll->next to its own 
index to create a self loop and sets ll->value to zero, where zero is the identity value of the scan 
operator. In this way, it can repeatedly add the tail value to the sublist sum without affecting the 
sum. 

Initialization starts by finding m, the appropriate number of sublists to use given the length 
of the linked list. In Section 2.4.3 I discuss how to determine what is an appropriate value for m. 
Gen_Tails finds m pseudo-random positions in the linked list, sl->random, which are to be the tails 
of the sublists. It also ensures that none of these positions are the tail of the whole list. To simplify 
the implementation I chose to use equally spaced positions and assumed that the linked lists are 
randomly ordered. If the ordering of the links is random then we can expect sublist lengths to 
follow the same distribution as when the heads of the lists are chosen randomly. Next Initialize 
saves the links and values at the tails. The head of the first sublist is the head of the whole linked 
list. Because the links are retrieved from random positions, to retrieve ll->next requires loading 
sl->random and a gathering ll->next using sl->random, and to save sl->head requires a store. 
Then Initialize gathers ll->value at sl->random and stores them in sl->value. 

Next Initialize turns the linked list into a set of sublists by setting the sublist tails to self 
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loops and tail values to zero. As the tails are at random positions these assignments require two 
scatter operations. In Phase 1 it need not worry about the value of the tail of the whole list because 
the algorithm does not use tail sublist sum when finding the scan in Phase 2. Finally Initialize 
initializes the virtual processor vectors: it stores the heads, stores zero's at the sums, and stores 
the processor identifiers (index). 

Initialize (vp,   si, 11) 

{ 

} 

m = ComputeJTum_Sublists(ll->n) ; 
Gen.Tails  (sl->random, m,  ll->n); 
sl->head[0]  = ll->head; 

for (i=l;  i < sl->n;  i++)  { 
sl->head[i]  = ll->next[sl->random[i]]; 
sl->value[i] = ll->value[sl->random[i]]; 

ll->next[sl->random[i]] = sl->random[i]; 
ll->value[sl->random[i]]  = ZERO; 

} 
for (i = 0;  i < sl->n;  i++)  { 

vp->next[i]  = sl->head[i]; 
vp->sum[i]  = ZERO; 
vp->id[i]  = i; 

return m; 

/* Find random positions 
/* Set head of first sublist 

*/ 
7 

/* Save tails of sublists */ 
/* Gather heads and save */ 
/* Gather values at tails and save */ 

/* Set up sublists */ 
/* Scatter self loops at tails */ 
/* Scatter zero at tails values */ 

/* Initialize virtual processors 
/* Store heads 
/* Initialize sums 
/* Assign processor id's 

7 
*/ 
*/ 
*/ 

} 

InitiaLScan: Initial-Scan traverses each sublist for n_steps times computing the sum of the 
links. Because the weight of the tail is zero, it can repeatedly accumulate the sum at the tail without 
affecting the sum. Each traversal of the array of links requires retrieving the values and links at 
arbitrary locations in 11. Thus, it uses two gather operations. To increment the sum requires 
loading, adding to, and storing vp->sum. Finally it needs to store the current link vp->next. 

InitiaLScan  (vp, 11, n_steps) 

{ 
for  (j  =0;  j  < n_steps;  j++)  { 

for  (i = 0;   i < vp->n;   i++)  { 
vp->sum[i]  +=ll->value[vp->next[i]]; 
vp->next[i]  = ll->next[vp->next[i]]; 

} 

/* Traverse n_steps links 

/* Gather value and add to sum 
/* Gather successor link 

*/ 

*/ 
*/ 

} 
} 

The CRAY only allows strip mining on an inner loop; the vector registers first hold the first v 
elements of the arrays, then the next v elements, and so on, where v is the vector register length. 
It is more efficient, however, to do strip mining of the inner loop outside the outer loop. To get 
that effect, the implementation unrolls the loop eight times so that it traverses eight links of each 
sublist before going on to the next set of virtual processors. In this way, the CRAY avoids the loads 
and stores of vp and keeps intermediate results in vector registers for each set of eight iterations. 
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InitiaLPack: After traversing the sublists s[l] steps ListJScan packs out any completed list. 
Packing requires saving the results of the completed lists according to their processor identifiers 
and then packing the remaining lists in vp so that they are contiguous. A sublist is complete if 
the virtual processor has reached the tail of its sublist, which is a self loop. To test for a self 
loop requires loading vp->next, gathering ll->next at vp->next, and testing whether the two are 
equal. There are two ways I could get the compiler to save the completed lists. One is to compute 
the indices of the completed lists and then using these indices to gather vp->sum, vp->next, and 
vp->id. Then it can scatter vp->sum to rl->value and vp->next to sl->tail at the indices in 
vp->id. The other way is to load vp->sum, vp->next, and vp->id, and change them so that all 
active sublists use one of the completed sublist values by using a vector merge operation. Then, as 
before, it can scatter vp->sum to rl->value and vp->next to sl->tail at the indices in vp->id. 
The effect is to have all active sublists write to the same location in rl->value and sl->tail. The 
latter approach causes much memory contention because most of the sublists are active. Clearly, 
the former approach is better and is what I used. 

InitiaLPack (vp,  si,  11,  rl) 

{ 
j  = 0; 
for  (i = 0;  i < vp->n;   i++)  { 

if (vp->next[i]  == ll->next[vp->next [i]])  { /* Save completed sublists */ 
rl->value[vp->id[i]]  = vp->sum[i] ; /* Gather and scatter sum */ 
sl->tail[vp->id[i]]  = vp->next [i] ; /* Gather and scatter tail */ 

} else { /* Pack remaining sublists */ 
vp->id[j]  = vp->id[i] ; /* Gather and store processor ids */ 
vp->sum[j]  =vp->sum[i]; /* Gather and store current sum   */ 
vp->next[j++]  = vp->next [i] ; /* Gather and store current link    */ 

} 
} 
return j ; /* Number of remaining sublists        */ 

} 

It packs the remaining active sublists by computing the indices of the active sublists and for 
each array, vp->next, vp->sum and vp->id, gathering the data using the active indices and then 
storing the data contiguously. 

Find_Sublist_List: At this point each sublist has reached its tail and is ready to start Phase 2. 
Recall that sl->tail holds indices for the sublist tails, while sl->random holds indices for the tails 
of the previous sublists. Therefore, when Find_Sublist_List writes the sublist index to ll->next 
at sl->random, then it is writing the index of the successor sublist to the tails of the sublists. (The 
implementation writes to ll->next because it can easily regenerate the self loops there.) This write 
requires loading sl->random and then scattering the index to ll->next at sl->random. Note that 
sl->random does not contain the index of the tail of one sublist, namely the tail of the whole list. 
Therefore, if it writes negative indices it can distinguish between values set at sl->random and the 
original self loops in ll->next. Next Find_Sublist_List gathers these indices from ll->next, but 
this time using sl->tail. These indices are the indices of the successor sublists as long as they 
are negative. Only one index is positive and it is the index of the tail of the whole list. Notice that 
it does the writing and reading of the indices in separate loops because the reading of the indices 
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may not be in the same order as the writing. That is, it needs to be sure that the write is complete 
before the read starts and there is no chaining. 

Find_Sublist_List(rl,  11, si) 

{ 

} 

for  (i=l;   i<rl->n;  i++) 
ll->next[sl->random[i]]  = -i; 

for (i=0;   i < sl->n;  i++)  { 
next = ll->next[sl->tail[i]]; 
rl->next[i]  = -next; 
if (next > 0){ 

rl->next[i]  = i; 
sl->random[0]  = next; 
sl->value[0]  = ll->value[next]; 
ll->value[next]  = ZERO; 

} 
} 
for (i=0;   i<sl->n;  i++)  { 

ll->next[sl->tail[i]]  = sl->tail[i]; 
rl->value[i]  +=sl->value[rl->next[i]]; 
vp->next[i]  = sl->head[i]; 

} 

/* Scatter index of next sublist 
/* Create list of sublists 

/* Gather index of next sublist 
/* Store the index 

/* Found tail of 11 
/* Set rl tail to self loop 
/* Save tail index of 11 
/* Save tail value 
/* Set tail value to the identity 

*/ 
*/ 
7 
*/ 
7 
7 
*/ 
*/ 
*/ 

/* Scatter self loops at tails */ 
/* Gather tail values and add to sum*/ 
/* Reset virtual processor heads        */ 

Once Find_Sublist_List finds the tail sublist it sets the tail of rl->next to a self loop, saves 
the tail of the whole list in sl->random[0] and its value in sl->value[0], and sets the value of tail 
of the whole list to zero. Note that it was not necessary to set the value of the tail of the whole list 
to zero for the Phase 1 because it did not use the tail sublist sum to find the scan of the reduce 
list. But in Phase 3 it needs the tail value set to zero because, otherwise, it may repeatedly add 
the tail value to the scan at the tail. 

Finally, Find_Sublist_List returns the tails of the sublists to self loops, which requires loading 
sl->tail and scattering it to ll->next. Since the tail values were never added to the sublist sums 
during Initial-Scan, it next adds the tail values to the sublist sums. The successor sublist saved 
the tail values in sl->value during Initialize and, therefore, must be indexed by rl->next. It 
loads rl->value, gathers sl->value using rl->next, adds sl->value to the sums in rl->value 
and then stores rl->value. Lastly, it reinitializes the virtual processor heads in anticipation of 
Phase 3. Reinitializing the heads requires loading sl->head and storing it in vp->next. 

Scan of the Reduced List: Next List_Scan finds the list scan on the sublists sums rl->value 
using the list rl->next. If the list is large then it finds it recursively. If list length lies be- 
tween the recursive cutoff and the serial cutoff it uses Wyllie. If the list length is small it uses 
SerialJList_Scan. The time for Serial_List_Scan is: 

FinaLScan: In Phase 3 List^can repeatedly calls Final_Scan to traverse the sublists for n_steps 
steps. FinalJScan finds the scan of each sublist in the same manner as in Phase 1. The only dif- 
ference is that FinalJScan scatters the resulting scan vp->sum to ll_sum at the current positions 
in vp->next. 
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Final_Scan(ll_sum, vp,  11, n_steps) 

{ 
for (j  =0;  j < n_steps;  j++) 

for  (i = 0;   i < vp->n;  i++)  { 
ll_sum[vp->next[i]]  = vp->sum[i] ; 
vp->sum[i]  +=ll->value[vp->next[i]]; 
vp->next[i] = ll->next[vp->next[i]]; 

} 
} 

} 

/* Load and scatter sums 
/* Gather value and add to sum 
/* Gather successor link and store 

7 
7 

FinaLPack: The packing step in Phase 3 is a little simpler than the packing step in Phase 1. 
Only the completed lists need to write their sums to ll_sum because the active sublists will write 
their sums on the next call to Final_Scan. However, it is faster to simply load all of vp->sum and 
scatter to ll_sum than it is to compute the indices of the completed sublists, to gather vp->sum 
and then scatter them to ll_sum. For active sublists, Final-Pack packs vp->sum and vp->next as 
in Initial-Pack. However, it does not need to save vp->id. 

FinaLPack (ll_sum, vp,  si,  11) 

{ 
j  = 0; 
for (i = 0;  i < vp->n;  i++)  { 

ll_sum[vp->next[i]]  = vp->sum[i] ; /* Load and scatter sums 
if (vp->next[i]   != ll->next[vp->next[i]]) { /* Pack remaining sublists 

vp->sum[j] = vp->sum[i] ; /* Gather and store sums 
vp->next[j++]  = vp->next [i] ; /* Gather and store links 

} 
} 

} 
return j; 

7 
7 
7 
7 

RestoreJList: Finally each processor returns the original links and values at the sublist tails. 
This requires loading sl->random, sl->head, and sl->value and scattering to ll->next and 
ll->value using sl->random. Because the tail of the whole list is a self loop anyway, it does not 
set ll->next at the tail. 

RestoreJList (si,  11) 

{ 
ll->value[sl->random[0]]  = sl->value[0]; /* Reset value of list tail 7 
for (i = 1;  i < sl->n;  i++)  { 

ll->next[sl->random[i]]  = sl->head[i]; 
ll->value[sl->random[i]]  = sl->value[i]; 

} 

/* Scatter links at tails 
/* Scatter values at tails 

7 
7 



Chapter 3 

Fast Set Operations Using Treaps 

In this chapter I consider another common pointer-based application, operations on balanced trees.* 
Instead of trying to obtain the absolute fastest solutions, I used the more modest shared-memory 
multiprocessors, which are becoming quite common. Again, I was interested in the kinds of problems 
that pointer-based algorithms present when implemented in parallel and how the architecture affects 
their performance. First, in Section 3.1, I introduce random balanced binary trees (treaps [103]), 
which I used for my algorithms and experiments, and relate my algorithms with previous work. 
In Section 3.2 I review the definition of treaps and the two sequential operations split and join, 
which I use for aggregate operations. Then I present the aggregate operations, union, intersection, 
and difference. Section 3.2.3 presents a refinement to union and implementation variations of the 
operations. In Section 3.3 I show bounds on the work and depth of the algorithms and the union 
refinement. Section 3.4 shows the results of my implementation experiments both sequentially and 
in parallel on the SUN Ultra Enterprise 3000 and in parallel on the SGI Power Challenge. I finish 
with a discussion of the work and how the algorithms might be extended to skip lists. 

3.1    Introduction 

Balanced trees provide a wide variety of low-cost operations on ordered sets and dynamic dictio- 
naries. Of the many types of balanced trees that have been developed over the years, treaps [103] 
have the advantage of being both simple and general—in addition to insertion and deletion they 
easily support efficient finger searching, joining, and splitting. Furthermore, by using appropriate 
hash functions they require no balance information to be stored at the nodes. Treaps, however, 
have only been studied in the context of sequential algorithms, and there has been little study of 
their performance. 

I extend previous work on treaps by describing and analyzing parallel algorithms on treaps 
and by presenting experimental results that demonstrate their utility. I focus on the aggregate 
set operations intersection, union, and difference since these operations play an important role in 
databases queries, index searching [114, 83], and other applications. The techniques I describe can 
also be applied to searching, inserting and deleting multiple elements from a dictionary in parallel. 

Treaps are randomized search trees in which each node in the tree has a key and an associated 
random priority. The nodes are organized so that the keys appear in in-order and the priorities 
appear in heap-order. Seidel and Aragon showed that insertion, deletion, searching, splitting, and 

'This chapter is in large part taken from [25] 
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joining* can all be implemented on treaps of size n in O(logn) expected time, and that given a 
"finger" in a treap (a pointer to one of the nodes), one can find the key that is d away in the sorted 
order in 0(\ogd) expected time (although this "finger searching" requires extra parent pointers). 
They also showed that one heed not store the priorities at the nodes, but instead can generate 
them as needed using a hashing function. The simplicity of the algorithms led them to conjecture 
that the algorithms should be fast in practice. Although they did not present experimental results, 
I ran experiments that compared treaps to splay trees [105], red-black trees, and skip lists [94] and 
the results show that treaps have around the same performance as these other fast data structures. 
These results are briefly presented in Section 3.4.1. 

My interest is in developing fast parallel algorithms for set operations. Set operations are used 
extensively for index searching—each term (word) can be represented as a set of the "documents" 
in which it appears and searches on logical conjunctions of terms are implemented as set operations 
(intersection for and, union for or, and difference for and-not) [114, 83]. Most web search engines 
use this technique. The set-union operation is also closely related to merging—it is simply a merge 
with the duplicates removed. It is well known that for two sets of size m and n (m < n) merging, 
union, intersection and difference can be implemented sequentially in 0(mlog(n/m)) time [30]. In 
applications in which the sets are of varying and different sizes, this bound is much better than 
using a regular linear time merge (0(n -f m) time) or inserting the smaller set into the larger set 
one element at a time using a balanced tree (O(mlogn) time). Previous sequential algorithms that 
achieve these bounds, however, are reasonably messy [30, 31]. The only parallel version I know of 
that claims to achieve these work bounds [68] is much more complicated than mine. 

Seidel and Aragon did not directly consider merging or set operations using treaps. It is straight- 
forward, however, to use their finger search to implement these operations within the optimal time 
bounds (expected case). In particular, if pi is the position at which element i of set A would be 
in set B, the expected time to insert all of A into B, by inserting one element at a time using the 
previous element as afinger, is odl'1(l + Iog(l+pi-p,-_i))). With \A\ = m, \B\ = n, and m < n 
this sum is bounded by 0(m\og(n/m)). Although the algorithm is probably simpler than previous 
techniques, it requires parent pointers and does not parallelize. 

In this chapter I describe algorithms for union, intersection and difference on ordered sets 
that use pairs of treaps directly. The algorithms run in optimal 0(mlog(n/m)) work and in 
O(logn) depth (parallel time) on an EREW PRAM with unit-time scan operations (used for load 
balancing)—all expected case. This bound is based on automated pipelining (see Chapter 4)— 
without pipelining the algorithms run in 0(log2n) depth. As with the sequential algorithms on 
treaps, the expectation is over possible random priorities, so the bounds do not depend on the 
key values. The algorithms are very simple (although the analysis of their bounds is not) and 
can be applied either sequentially or in parallel. All the algorithms have a similar divide-and- 
conquer structure and require no extensions to the basic treap data structure. I also show that, 
for two ordered sets of size n and m, if k is the minimum number of blocks in a partitioning of 
the first set that contains no elements of the second, a variant of the union algorithm requires only 
0(k\og((n + m)/k) expected work. This is optimal with respect to the block measure [34]. 

To analyze the effectiveness of the algorithms in practice I ran several experiments. I was 
interested in various properties including how well sequentially treaps compare with other balanced 
trees such as red-black trees, how well the treap algorithms perform for various number of blocks 
of keys, and how well the algorithms parallelize. The serial experiments show that treaps are 
competitive with splay trees, skip lists, and red-black trees. They also show that the algorithms 

'Join requires that the largest key in the first tree is smaller than the smallest element of the second tree, while 
union has no such restriction. 
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perform well when the keys are clustered into blocks. I used Cilk [26], a parallel extension of C, 
for the parallel implementation, and ran the experiments on a SUN Ultra Enterprise 3000 and an 
SGI Power Challenge. The algorithms achieve speedups of between 4.1 and 4.4 on 5 processors of 
the Sun and between 6.3 and 6.8 on 8 processors of the SGI. I feel that this is reasonably good 
considering the high memory bandwidth required and the irregular access patterns used by the 
algorithm. 

Related Work 

Merging and the related set operations (union, intersection and difference) have been well studied. 
Merging two ordered sets N and M of size n and m requires at least [lg ("*m)] comparisons in 
the worse case since an algorithm needs to distinguish between the (n+

n
m) possible placements of 

the n keys of iV in the result. Without loss of generality I henceforth assume m < n, in which 
case flg(n+TO)] = 0(mlog(n/m)). Hwang and Lin [67, 71] described an algorithm that matches 
this lower bound, but the algorithm assumes the input sets are in arrays and only returns cross 
pointers between the arrays. To rearrange the data into a single ordered output array requires an 
additional 0(n + m) steps. Brown and Tarjan gave the first 0(mlog(n/m)) time algorithm that 
outputs the result in the same format as the inputs [30]. Their algorithm was based on AVL-trees 
and they later showed a variant based on finger searching in 2-3 trees [31]. The same bounds can 
also be achieved with skip-lists [93]. 

The lower bound given above makes no assumptions about the input. When using a measure 
of the "easiness" of the input the bounds can be improved. In particular, suppose set A is divided 
into blocks of elements Ai,A2,...,Aka,nd set B is divided into blocks of elements Bl,B2,...,Bi 

such that the merged set is an alternation of these blocks from A and B (k = I ± 1). Such inputs 
can be merged in 0(klog((n + m)/k)) time [34, 93]. In fact any data structure that takes 0(log k) 
time for a split on the kth element of an ordered set, or to append (join) k elements to an ordered 
set can be used to achieve these bounds. Pugh used this approach for skip lists [93] and although 
not discussed directly, the approach can also be applied to treaps when using the "fast" versions of 
splits and joins. However, as with finger searches, these "fast" versions require parent pointers. 

In the parallel setting previous work has focused either on merging algorithms that take 0(n+m) 
work and are optimal when the two sets have nearly equal sizes or on multi-insertion algorithms 
that take 0(ralog n) work and are optimal when the input values to be inserted are not presorted. 

Anderson et al. [7], Dekel and Ozsvath [43], Hagerup and Rüb [54], and Varman et al. [110] 
provide 0(n/p + log n) time EREW PRAM algorithms for merging. Guan and Langston [53] give 
the first time-space optimal algorithm that takes 0(n/p + log n) time and 0(1) extra space on 
an EREW PRAM. Katajainen et al. [69] gives a simpler algorithm with the same time and space 
bounds for the EREW and an optimal space-efficient 0(n/p + log log m) time and 0(1) space 
algorithm for the CREW PRAM. 

Paul et al. provide EREW PRAM search, insertion, and deletion algorithms for 2-3 trees [92], 
and Highan and Schenk have extended these results to B-trees [60]. Ranade [96] gives algorithms 
for processing least-upper-bound queries and insertion on distributed memory networks. Bäumker 
and Dittrich [13] give algorithms for search, insertion, and deletion into BB*(a) trees for the BSP* 
model that are 1-optimal and 2-optimal, where c-optimal means that as the problem size grows the 
speedup-up tends to p/c, where p is the number of processors, and that the communication time is 
asymptotically smaller than the computation time. All these algorithms require O(ralogn) work 
and appear to have large constants. 

In 1975 Gravil gave the first CREW PRAM merge algorithm that requires only 0(mlog(n/m)) 
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comparisons. However, as with Hwang and Lin's serial algorithm, it requires an additional 0(n+m) 
operations to return the sorted merged results in an array. Katajainen describes EREW PRAM 
algorithms for union, intersection and difference that use the same input and output representa- 
tions [68]. The algorithms are an extension of Paul et al.'s 2-3 tree algorithms and he claims they 
run in optimal O(logn + log m) depth and 0(mlog(n/m)) work. The algorithms as described, 
however, do not actually meet these bounds since the analysis incorrectly assumes a 2-3 tree of 
depth logm has 0(m) leaves. It may be possible to modify the algorithms to meet the bound and 
the general approach seems correct. 

3.2    Treaps 

Treaps use randomization to maintain balance in dynamically changing search trees. Each node in 
the tree has an associated key and a random priority. The data are stored in the internal nodes of 
the tree so that the tree is in in-order with respect to the keys and in heap-order with respect to 
the priorities. That is, for any node, x, all nodes in the left subtree of x have keys less than z's key 
and all nodes in the right subtree of x have keys greater than z's key (in-order), and all ancestors 
of x have priorities greater than z's priority and all descendents have priorities less than z's (heap- 
order). For example, Figure 3.1a shows a treap where each (letter, number) pair represents a node 
and the letter is the key value and the number is the priority value. When both the keys and the 
priorities are unique, there is a unique treap for them, regardless of the order the nodes are added 
to or deleted from the treap. 

The code shown in this section uses a node type, which points to a structure that contains the 
data for a node in a treap. This code and the code I used in my experiments implements persistent 
versions of the operations. That is, rather than modifying the input trees, the code makes copies 
of nodes that need to be modified using the function new_node. This function fills a new node with 
the key and priority data given in its arguments. All code in this section along with nonpersistent 
and parallel versions are available at http://www.cs.cmu.edu/~scandal/treaps.html. 

3.2.1    Sequential algorithms 

Seidel and Aragon showed how to perform many operations on treaps [103]. I quickly review the 
operations split and join, which the set operations use to manipulating pairs of treaps. 

(L, x, G) = split(T, key) Split T into two trees, L with key values less than key and G with key 
values greater than key. If T has a node x with key value equal to key then x is also returned. 

T = join(n, T2) Join Tl and T2 into a single tree T, where the largest key value in Tl is less 
than the smallest key value in T2. 

Below I give the recursive top-down C code for persistent split and join. The split and 
join I use in my experiments are the slightly more efficient iterative versions. In addition, there 
are bottom-up algorithms that use rotations for these operations [103]. 

Split To split a tree rooted at r by key value a split follows the in-order access path with respect 
to the key value a until it reaches either a node with key value a or a leaf node. If the root key is less 
than a, the root becomes the root of the "less-than" tree. Recursively, split splits the right child 
of the root by a, and then makes the resulting tree with keys less than a the new right child of the 
root and makes the resulting tree with keys greater then a the "greater-than" tree. Similarly, if the 
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root key is greater than a split recursively splits the left child of the root. If the root key is equal 
to a split returns the root and the left and right children as the "less-than" and "greater-than" 
trees, respectively. Figure 3.1 shows the result of a split on a treap. The expected time to split 
treaps into two treaps of size n and TO is O (log n + log TO) [103]. The following code returns the less 
and greater results by side effecting the first two arguments. It returns an equal key, if present, as 
the result. 

node split(node *less,  node *gtr, node r,  key t key) 
{ 

node root; 
if (r == NULL) {*less = *gtr = NULL; return NULL;} 

root = new_node(r->key, r->priority); 
if (r->key < key) { 

*less = root; 

return split(&(root->right), gtr, r->right, key); 
} else if (r->key > key) { 

*gtr = root; 

return split(less, &(root->left), r->left, key); 
} else { 

*less = r->left; 

*gtr = r->right; 

return root; 

} 

Figure 3.1: Treap Split, a: Input tree for split with each node's (key,priority) values. When splitting by 
the key v, the unshaded region becomes the less-than tree and the shaded region becomes the greater-than 
tree. The double links show the path split follows, b: The result trees. The striped nodes are the new 
nodes that the persistent version of split creates. 

Join To join two treaps T\ with keys less than a and T2 with keys greater than a join traverses 
the right spine of Tl and the left spine of T2. A left (right) spine is defined recursively as the root 
plus the left (right) spine of the left (right) subtree. To maintain the heap order join interleaves 
pieces of the spines so that the priorities descend all the way to a leaf. The expected time to join 
two treaps of size n and TO is O(log n + log TO) [103]. 
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node join(node rl, node r2) 

{ 
node root; 

if (rl == NULL) {return r2;} 

if (r2 == NULL) {return rl;} 

if (rl->priority < r2->priority) { 

root = new_node(rl->key, rl->priority); 

root->left = rl->left; 

root->right = join(rl->right, r2); 

} else { 

root = new_node(r2->key, r2->priority); 

root->left = join(rl, r2->left); 

root->right = rl->right; 

} 
return root; 

} 

3.2.2    Parallel algorithms 

In the parallel setting we view each treap as an ordered set of its keys and we consider the following 
operations: 

T = union(T'l, T2) Find the union of treaps T\ and T2 to form a new treap T. 

T = intersect(T1,T2) Find the intersection of treaps Tl and T2 to form a new treap T. 

T = diff(Tl,T2) Remove from Tl nodes that have the same key values as node in T2, returning 
its new root T. 

All three algorithms have a similar divide-and-conquer structure in which they use the key from 
the larger priority root to split the tree with the smaller priority root, and then make two recursive 
calls (which can be parallel) on the values less and greater than the key. The algorithms differ in 
how they combine the results. The code I show below is for the sequential C versions. To make 
them parallel using Cilk, one needs only put the cilk keyword before each function definition, 
the spawn keyword before each recursive call, and the sync keyword after both recursive calls. As 
discussed in 3.4.2 the versions used in the experiments also terminate the parallel calls at a given 
depth in the tree to reduce the overhead of spawning. 

Union: To maintain the set in heap- order with respect to the priorities, union makes r, the root 
with the largest priority, the root of the result treap. If the key of r is k then, to maintain the set 
in-order with respect to the keys, union splits the other treap into a "less-than" treap with key 
values less than k and "greater-than" treap with key values greater than k, and possibly a duplicate 
node with a key equal to k. Then, recursively (and in parallel) it finds the union of the left child 
of r and the less-than tree, and finds the union of the right child of r and the greater-than tree. 
The result of the two union operations become the left and right subtrees of r, respectively. The 
following C code implements the algorithm. 



3.2.   TREAPS 41 

node union(node rl, node r2) 

node root,  less,  gtr,  duplicate; 

if  (rl == NULL)     return r2; 
if  (r2 == NULL)    return rl; 

if  (rl->priority < r2->priority)  swap(&rl,  &r2); 
duplicate = split(feless, ftgtr,  r2,  rl->key); 

root = new_node(rl->key, rl->priority); 
root->left    = union(rl->left,  less); 
root->right = union(rl->right, gtr); 
return root; 

} 

Intersection: As with union, intersection starts by splitting the treap with the smaller priority 
root using k, the key of the root with the greater priority. It then finds the intersection of the two 
left subtrees, which have keys less than k, and the intersection of the two right subtrees, which 
have keys greater than k. If k appeared in both trees then these results become the left and right 
children of root used to split. Otherwise it returns the join of the two recursive call results. 

node intersect(node rl,  node r2) 
i 

node root,  less,  gtr,  left,  right,  duplicate; 

if  ((rl == NULL)   I I   (r2 == NULL))  return NULL; 

if  (rl->priority < r2->priority)  swap(&rl,  &r2); 
duplicate = split(&less, &gtr,  r2,  rl->key); 

left    = intersect(rl->left,  less); 
right = intersect(ri->right, gtr); 

if  (duplicate == NULL)  { 
return destruct_join(left,  right); 

} else { 
root = new_node(rl->key,  rl->priority); 
root->left = left; 
root->right = right; 
return root; 

} 
} 

Notice that because the nodes returned by the intersection are all copies of input tree nodes, 
intersect can use a destructive version of join, one that modifies the nodes of the tree. 
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Difference: To find the difference of two treaps Tl and T2 diff splits the treap with the smaller 
priority root using k, the key of the root of the other treap. Then it finds the difference of the 
two left subtrees, which have keys less than k, and the difference of the two right subtrees, which 
have keys greater than k. Although not necessary, to simplify the code below I use the boolean 
r2_is_subtr to distinquish when T2 is the subtrahend (the set specifying what should be removed) 
and when T2 is not. If T'2 is the subtrahend and it does not contain k, then it sets the left and 
right children of the root of Tl to the results of the recursive calls and returns this root. Otherwise 
it returns the join of the results of the recursive calls. 

node diff(node rl, node r2, bool r2_is_subtr) 
■C 

node root, less, gtr, left, right, duplicate; 

if ((rl == NULL) I I (r2 == NULL)) 

return r2_is_subtr ? rl : r2; 

if (rl->priority < r2->priority) { 

r2_is_subtr = !r2_is_subtr; 

swap(&rl, &r2); 

} 
duplicate = split(ftless, ftgtr, r2, rl->key); 

left = diff(rl->left, less, r2_is_subtr); 

right = diff(rl->right, gtr, r2_is_subtr); 

/* Keep rl if no dupl. and subtracting r2 */ 

if ((duplicate == NULL) && r2_is_subtr) { 

root = new_node(rl->key, rl->priority); 

root->left = left; 

root->right = right; 

return root; 
} else { /* Delete rl */ 

return join(left, right); 

} 

} 

3.2.3    Extensions 

Using Fast Split and Join: The versions of split and join that the above algorithms use 
can split a treap into two treaps of size m and n or join two treaps of size m and n with 
0(lgmax(n,m)) expected work. Seidel and Aragon also describe "fast" versions of split and join 
that use 0(lgmin(n, m)) expected work. These versions use parent pointers for quick access from 
the two ends of a set, and are similar to finger searching. The use of such fast versions of join and 
split does not effect the asymptotic work bounds assuming a general ordering of the input sets, 
but they do allow us to generate a parallel algorithm that is optimal with respect to the block 
measure. As described in the introduction if set A is divided into blocks of Ai, A2,..., Ak and set 
B is divided into blocks of elements B\, B2,..., B\ such that the merged set is an alternation of 
these blocks from A and B, then A and B can be merged in O(k\og((n + m)/k)) time. This bound 
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also applies to union, although k is defined as the minimum number of blocks of A such that no 
value of B lies within a block. These times are optimal but previous algorithms are all sequential. 

Section 3.3.2 shows that the parallel union algorithm achieves the same work bounds if it 
uses fast splits and joins. The modified algorithm also requires another change, at least for the 
analysis. In this change, if split(&less,&grt,r2,rl->key) returns an empty tree in less, then 
the algorithm executes the following instead of making the two recursive calls 

km = minkey(r2); 
dup = split(&ll,&rr,rl,km); 
root = join(ll,union(rr,r2); 

where minkey(r2) returns the minimum key in the set represented by r2. A symmetric case is 
used if grt is empty. 

Note that although the analysis uses the fast splits and joins to prove the bounds, the algorithm 
with the slow versions still seem to work very well experimentally with respect to number blocks. 
I give some experimental results in Section 3.4.2. 
Nonpersistent versions: All the code I show and use in my experiments is fully persistent in that 
it does not modify the input treaps. Persistence is important in any application where the input 
sets or intermediate results might be reused in future set operations. Certainly in the application 
of index searching we do not want to destroy the sets specifying the documents when manipulating 
them. In other applications, such as updating a single dictionary kept as a treap, nonpersistent 
versions are adequate. In such applications we typically view one of the treaps as the treap to 
be modified and the other as the set of modifications to make. The only changes that need to be 
made to my code to make such nonpersistent versions is to have them modify the nodes rather 
than create new ones, and to explicitly delete nodes that are being removed. 

The relative performance of the persistent and nonpersistent versions are discussed in Sec- 
tion 3.4.2. The persistent code is not as space efficient as the more sophisticated method of Driscoll 
et al. [44], but their solution is much more complex and does not apply to operations that combine 
two trees. 

3.3    Analysis 

In Section 3.3.1 I analyze the expected work to find the union, intersection, and difference of two 
treaps tn and tm of size n and m, with m < n. In Section 3.3.2 I analyze union with fast splits and 
show that it is optimal with respect to interleaving blocks of keys. 

3.3.1    Union, intersection, and difference 

Consider union first. Without loss of generality, assume that the key values for the two trees 
are 1,2,3,.. .,n + m. Let TV and M be the sets of keys for tn and tm, respectively, such that 
NU M = 1, 2, 3,..., n + m and JVnM = |. (The expected work for the split operation in union 
is maximized when N l~l M = 0.) 

Since the priorities for the two treaps are chosen at random, arranging the keys so that their 
priorities are in decreasing order results in a random permutation a £ Sn+m, where Sn+m is 
the set of all permutations on n + m items. Along with N and M this permutation defines the 
result treap and the parallel work and depth required to find it. Therefore; we define W(JV, M, a) 
to be the work required to take the union of two specific treaps, which depends both on the 
interleaving of the key values in N and M and on the permutation a defined by their priorities. 
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We define E[W(N,M)] to be the expected work to take the union of N and M averaged over 
all permutations (i.e., l/(n + m)\J2aesn+m W(JV,M,cr)). Even when the sizes of N and M are 
fixed this expected work can depend significantly on the interleaving of N and M. We define 
E[W(n,m)] = max{E[W(7V,M)],|JV| = n,\M\ = m}. This is the worst case work over the 
interleavings and expected case over the permutations, and is what we are interested in. 

The work for a permutation a = (ax = i, a2, «3, • • •, an+m) is the time to split one treap using 
i plus the work to take the union of the treaps with keys less than i and the union of the treaps 
with keys greater than i. We use the notation N< i to indicate all keys in the set N which are less 
than i. Since it is equally likely that any i will have highest priority, we can write the following 
recurrence for the expected work for a given TV and M averaged over all permutations 

n+m 

(n + ro)E [W(N, M)]   =    £ (E [W{N< i, M< i)} + E [W(7V> i, M> i)]) + 

£ E [Tsplit(M, i)] + £ E [TspHt(N, 0] + (« + m)d, 
i€N ieM 

where d is a constant. From [103] we know that E[Tspnt{N,i)] = O(logn). These lead to the 
following lemma. 

Lemma 3.1   The expected work to take the union of two treaps of size n and m is bound by 

n+m —1 

(n + m)E[W(n,ro)]    <    max   £   {E[W(p,-, i -Pt)] + E[W(n - pum - i + Pi)]} 

+ 2W(0,0) + nO(log m) + mO(log n) + (n + m)rf, (3.1) 

uj/jere {pi} denotes the set {pi,...,pn} such that 0 < pi < n, 0 < i - pt < m, and p{ < pi+1. 

Proof.     Assume \N\ = n and \M\ = m. 

(n + m)E[W(n,m)]   =    (n + m) maxE[W(7V, M)] 
N,M 

n+m 

<    max *,»„£ ( max.E[W(A^<i,M<i)]+  max E[W(JV>i, M>t)]) 

+ nO (log m) + mO (log n) + (n + m)d 
n+m 

=   $^E (E[W(|iV<t|,|M<i|)] + E[W(|iV>t|,|M>t|)]) 

+ nO (log m) + mO (log n) + (n + m) d (3.2) 

Let pi = \N < i\, the number of items in N that are less than or equal to i. Clearly, if i £ N 
then pi = pi_x + 1, and if i <E M then pt- = pi_x. Then 

n+TO n+m 

£E[W(|7V<;|,|M<;|)]   =   W(0,0)+    £   E[W(p,--l,i-w)] 
i=1 i =2 

n+m 

+    J2   E[W(p,-,z-Pt--l)] 
i = 2 
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n-\-m 

=   W(0,0) + £ E [WCp,-.!, t - p,-.! - 1)] 

n+m—1 

=   W(0,0)+   2   E[W(p,-,t-p,-)], (3-3) 

and 

n+m n+m-1 

J]E[W(|iV>t|,|Af>i|)]=   J2   V\W{n-Pi,m-i + pi)] + W{0,0) (3.4) 

Substituting Equations 3.3 and 3.4 in Equation 3.2 we get 

n+m—1 

(n + m)E[W(n,ro)]    <    max   £   {E[W(pi,. - Pi)] + E[W(n - p,-,m - t + p,-)]} 

+ 2W(0,0) + nO(log TO) + mO(\og n) + (n + m)d 
n+m—1 

=   max   5]   {EtWfo.i-ttM + EtWfa-j^m-t + p,-)]} 

+ 2W(0,0) + nO(log TO) + mO(log n) + (n + m)d. 

■ 

Now we apply induction on the recurrence to show the bound on the expected work.   If we 
assume E[W(n,m)] = a log (n+m) - blog(n + m) and W(n,0) = W(0,TO) = c, where a, 6, and c 
are constants, and substitute in Equation 3.1 we get 

n+m —1 

(n + m)E[W(n,m)]    <    maxa   V    ^ log [ * ) + log f " + "* " * 

n+m —1 
— min * min 6   J2   {logi + log(n + TO-i)} 

+ 2c + nO (log TO) + TOO (log n) + (n + TO) eL (3.5) 

Consider the expression containing the maximum. First we find the integral pi values that 
maximize the sum with the a constant preceding it. Then we will place an upper bound on this 
expression by using a nonintegral approximations to Pi and Sterling's approximation for factorials. 

Lemma 3.2  The expression log (p'.)+log (n^ÜJ,~') is maximized when p{ = p,-, where Pi =   ^Ifffl 

Proof.      We want to find integer pi such that the expression using Pi - 1 or pt + 1 is no greater 
than that with p4-. That is, find p; such that 

(    i    \fn + m-i\/i\/n + m-i\ 
\Pi -l)\n- pi + l) ~ \Pi) \   n-pi   ) 

and 

/    i    \fn + m-i\/i\/n + m-i\ 
\pi + 1/U- Pi - 11 ~ \pi) I    n-pi   J 
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(0,m)f. HI (n,m) 

-#- r- 
(0,0) (n,0) 

Figure 3.2: Maximizing the expected work for union. The shaded region is the region of possible values 
for (pi,i — pi)- The points (squares) on the step function maximize (' )(n*™_1). The points (circles) on the 
straight line are the continuous approximation to the points on the step function. 

This occurs when 

1 
< 

1 
(i - pi + 1)(n - pi + 1)    _    pi(m - i + pi) 

Pi(m-i + pi)    <    (i + i)(n + l)-(i+l)pi-(n+l)pi+pf 

Pi   <    (i + l)(n + l)/(m + n + 2) 

and when 

1 
< 

(Pi + l){m-i + pi + l) (i - pi) (n - pi) 
Pi(m - i + 2 + Pi) + {m-i+l)    > in - pi(n + i - pi) 

Pi    > (in — m + i - l)/(m+ n + 2) 

= (t'+l)(n + l)/(m + n + 2)-l 

Therefore pi must be as in the statement of the lemma. 

Lemma 3.3   When pi is an integer for all i and 0<Pi<n,0<i — pi < m, and pi < pi+\ 

max 
{p 

n+m_1 f      f i\ 
y.S rgW+log " + _ra

];-M \<a(n + m)   logr + m)+21ogn + 5   .  (3.6) 

Proof. Because it is hard to work with floor values we use p, = ni/(n + m) as a continuous 
approximation to pi. Figure 3.2 graphically shows the relationship between the pi, which lies on a 
straight line between (0,0) and (n, m), and pi, which is on a step function that follows this line. In 
the following expressions, we use (*) to denote i\/T(p + l)T(i - p + 1), when p is not an integer. 
Then 

log 
i \ I n + m — i 

Kpi )\   n-pi 
<log nm\ 

n + m; — i 

,   n-Pi   j 

When we use  7 + (n + 1/2) log n — n < log T(n + 1) < 7 + (n + 1/2) log n - n + l/12n, where 
7 = \og^/2^T, for n real (see [70] exercise 1.2.11.2-6) to substitute for the binomial coefficients, we 
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get 

"Sf""S'f1081)+h8 ("--« ')} 

n+m—l  ( / ■ \ \ 
I 

<    2«   E   <logL    +log(nm) 

n+m—l 

<    2«   E   {b + (*'+ 1/2)log« - * + 1/12«] - [7 + (p,- + 1/2)logp,--p,- 

- [7 + (* ~ Pi + 1/2) log(i - pi) - (t - pi)] + log(nm)} 

=   2a   E   i-7 + (P.- +1/2) log (^) + (»-Ä +l^logf^-) 
;=l     <• VPt/ \t~PiJ 

log*'       1       ,     /      J 
-^-+12i+l0g(nm)/ 

12m 

•S"h(^'WH=)^(5:^(! 

-logi + — + 21og(nm) I 
6« J 

< a{(n + TO - 1) [-27 + (n + 1) log((n + m)/n) + (m + 1) log'((n + TO)/TO)] 

- [7 + (» + TO - 1/2) log(n + TO - 1) - (n + TO - 1)] 
+ log(n + m)/6 + 2(n + m - 1) log(nTO)} 

< a(n + m) |-7 + (n + ±) log (^) + (ro + I) log (ü±2) _ * log(n + m) 

1 1 .   1.     (n + m\      1,      /n + m\      1,    / x        11 

+ 1 + !|(!L±m)+2 1 
6(71 +TO) V       yJ 

log I J+61og(nmU. 

■ 
Next we consider the second summation in Equation 3.5. 

n+m—l 

b   J2   [loS *' + log(n + m - »)] > 2b[y + (n + m - 1/2) log(n + TO) - (n + m)] (3.7) 

Theorem 3.4 7%e expected work to take the union of two treaps tn and tm of size n and TO (m < n) 
is 

E[W(n,m)] = 0(mlog(n/m)) 
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Proof.      Substituting Equations 3.6 and 3.7 in Equation 3.5 gives 

(n + m)E[W(n, m)]    <    a(n + m) log ( 1 + 61og(nm) 

- 267 - 26(n + m) log(n + m) + 61og(n + m) + 26(n + m) 

+ 2c + gn log m + gm log n + rf(n + m) 

n + m 
<    (n + TO) clog 61og(n + m) 

<    (n + TO) 

=    (n + ra)0(mlog(n/m)) 

for sufficiently large 6, n, and m, and m < n. 

+ (n + 7n)[-61og(n + m) + 61og(?? + m)/(n + m) + 26 

+ (# + 6a) log(nm) + d] + 1c - 267 

n + m 
a log [" '   ")-61og(n + m) 

Corollary 3.5 The expected work to take the intersection of two treaps tn and tm of size n and 
m, respectively, and m < n is: 

E[W(ra,m)] = 0(mlog(n/m)) 

Proof. The only additional work that intersection does that union does not do is a join when 
there is no duplicate key. But since the join must be on trees that are no larger than the result 
trees of the split prior to the recursive calls, the additional join only changes the constants in the 
work bound. ■ 

Corollary 3.6 The expected work to take the difference of two treaps tn and tm of size n and m, 
respectively, and m < n is: 

E[W(n,m)] = 0(mlog(n/m)) 

Proof. As with intersection the only additional work difference does that union does not is a 
join. When a subtree of tn was split this join takes no more work than the split preceding it. 
When a subtree of tm was split the join may take work proportional to the log of the size of the 
corresponding subtree of tn. However, as this join only takes place when the key occurs in both 
tn and tm, the work over all permutations associated with the join is rnO(logn). Thus, the work 
bound for difference is same as for union. ■ 

Theorem 3.7 When p = TO/log m the expected depth to take the union, intersection, or difference 
of two treaps tn and tm of size n and m, respectively, and TO < n is 

E[D(n,m)] = O(logmlogn) 
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Proof. Let hn and hm be the heights of tm and tn, respectively. Every time tm is split it takes 
0(hm) time. Although the heights of the resulting trees may not be smaller than the original tree, 
the height of the subtrees from tn are reduced by one. Similarly, when tn is split the heights of the 
subtrees from tm are reduced by one. Thus, after 0{hmhn) steps the algorithm completes. Since 
the expected heights of tm and tn are O(logm) and O(logn), the expected depth of each operation 
is O (log TO log n). ■ 

In Chapter 4 I show that the depths of the operations can be reduced to O (log TO + log n) using 
pipelining. Furthermore, I show that since the recursive calls in the algorithms are independent 
(never access the same parts of the trees), the algorithms run with exclusive reads and writes. Using 
Brent'^ scheduling principle these results together with the work bounds imply the algorithms run 
in 0(m °^p

n'm> + Tslogn) time on an EREW PRAM, where Ts is the time for a scan, which is 
needed for scheduling the tasks to the processors. On a plain EREW PRAM Tc = logp and on a 
PRAM with scan operations Tc - 1   [19]. 

3.3.2    Analysis of union with fast splits 

Here I prove bounds on the work for union using fast splits when using the block metric. I do not 
know how to pipeline this version, so the depth of the algorithm on two sets of size n and TO is 
O(log n log TO). 

Lemma 3.8 Assuming the expected cost to cut a sequence into two sequences of nonzero length n 
and TO is 1 + lg(min(rc, TO)), any set of cuts that partitions a sequence of length n into k blocks has 
a total expected cost Tp < 2k(1 + \g(n/k)) 

Proof. For a sequence of blocks N we will denote the lengths of the blocks as {m, n2, ...,nk} 
and the sum of the lengths as n. We define TS(N) = £1 (1 + lg n,-). Since the logarithm is concave 
downward, for a fixed k and n this sum is maximized when all the blocks are the same length, 
giving TS(N) < k(l + lg\n/k]). We can model a set of cuts that partitions a sequence into blocks 
as a tree with the blocks at the leaves and each internal node representing one of the cuts. We use 
Tp(v) to denote the total expected cost of the cuts for a tree rooted at v. We use Ts(v) to refer to 
TS(N) where JV are the blocks at the leaves of the tree rooted at v. By our assumption of the cost 
of a cut we can write the recurrence 

j> (v\ — J   0 v a leaf 
pK '     \Tp(l(v)) + Tp(r(v)) + l + lg(mm(\l(v)\,\r(v)\)       otherwise (3>8) 

where l(v) and r(v) are the left and right children of v, and |u| is the sum of the sizes of the blocks 
in the tree rooted at v. The following is also true, by definition 

T (v) =f1 + lg(H) v a leaf 
s{
 '     \Ts(l(v)) + Ts(r(v))       otherwise. 

Now we prove by induction on the tree that Tp(v) < 2Ts(v) - lg(|u|) - 2. In the base case it is 
true for the leaves since 0 < 2(1 + lg \v\) - lg |v| - 2. For the induction case we substitute Ts into 
the right hand side of Equation 3.8 giving 

Tp(v)    <    2Ts(l(v))-\g(\l(v)\)-2 + 2Ts(r(v))-\g(\r(v)\)-2 

+l+\g(mm(\l(v)\,\r(v)\)) 

=   2Ts(v) - lg(n) - 3 

<   2Ts(v)-lg(n + m)-2 

=   21»-lg(M)-2, 
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where n = max(|/(v)|, |r(u)|) and m = min(|/(u)|, |r(u)|). Since TS(N) < k{\ + lg([n/A:])) we have 
for any set of cuts TP(N) < 2k{l+ \g{\n/k])). ■ 

Theorem 3.9 The parallel union algorithm using fast splits and joins on two ordered sets A and 
B runs in 0(k\g((n + m)/k)) expected work where \A\ = n, \B\ = m, and k is the minimum number 
of blocks in a partitioning of A such that no value of B lies within a block. 

Proof. We count all the work of the algorithm against the cost of cutting A into k blocks, cutting 
B into k ± 1 blocks, and joining the Ik ± 1 blocks.* Since the fast versions of split and join take 
work bounded by what is required by Lemma 3.8, the total expected work of cutting and joining 
is bound by 0{k\g((n + m)/k)). 

We consider two cases. First, when the split in the union returns two nonempty sets. In this 
case we count the cost of the split and the constant overhead of the union against the partitioning 
of either A or B (whichever is being split). Note that on either input set there can be at most 
k cuts due to calls to the split function. Union can make additional cuts within a block when it 
removes the root of the tree (when it has the higher priority) and divides the tree into its left and 
right branches. But these trivial cuts will only reduce the cost of the split cuts and are charged 
against a split in the other tree. Second, consider when the split in the union returns an empty 
set. In this case, even though the split only takes constant work, we cannot count it or the union 
overhead against the k cuts of A or B. Assume that (0,T2) = split(T2, n) (i.e., T-i is being split 
by the root of 2\). Recall, that when the fast-split version of union gets an empty set, it then 
splits T\ by the first value in T2 giving T\\ and T\i and executes join(Tn,union(Ti2,T2)). Finding 
the minimum value of Ti takes constant time using a finger search. We count the cost of the split 
against the partitioning of the set corresponding to T\ (unless T12 is empty, in which case we count 
the constant cost against the join). Since minkey(T2) < minkey(Ti2), the join is along one of the 
cuts between blocks of the result. We can therefore count the cost of the join and the constant 
overhead in the union against joining the 2k ± 1 result blocks. The constant work of any calls to 
union with an empty set (base of the recursion) are counted against their parent's split or join.    ■ 

3.4    Implementation 

To evaluate the performance of these set-based operations, I implemented the serial treap algorithms 
in Gnu C and the parallel ones in Cilk 5.1 [26]. Cilk is a language for multithreaded parallel 
programs based on ANSI C, and is designed for computations with dynamic, highly asynchronous 
parallelism, such as divide-and-conquer algorithms. It includes a runtime system that schedules 
the multithreaded computation using work-stealing and provides dag-consistent distributed shared 
memory. I ran my experiments on an SGI Power Challenge with 16 195MHz R10000 processors and 
4 Gbytes of memory running the IRIX 6.2 operating system, and on a Sun Ultra Enterprise 3000 
with six 248MHz UltraSPARC II processors and 1.5Gbytes of memory running the SunOS 5.5.1 
operating system. For each timing experiment I used at least five different data sets; the relative 
standard error of the times were less than 2% for the SUN Ultra Enterprise 3000 and less than 3% 
for the SGI Power Challenge. 

'To be precise, we count against a constant multiple of the plain split and join times since we include some 
constant-work overheads in the union function in their times. 
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3.4.1    Sequential experiments 

Since speedup is a common measure of the performance of parallel algorithms, it is important to 
compare the parallel performance with a good sequential algorithm. My first step was to verify that 
sequential treaps compare reasonably well with other good sequential balanced tree algorithms. I 
implemented and compared the performance of red/black trees [102], splay trees [105] (Sleator's 
code), skip lists [93] (Pugh's code), and treaps on an SGI Power Challenge and SUN Ultra Enterprise 
3000. 

To evaluate the performance of the algorithms I performed a series of tests that create a tree 
of size n, and insert, delete and search for k keys in a tree of size n. For each test I also used four 
data distributions. One distribution inserts, searches, and deletes random keys. The remaining 

distributions insert, search, and delete consecutive keys in various orders. Figure 3.3 shows the 
time to create a tree from random keys. The union version for treaps creates the tree using 
recursive calls to union organized as in mergesort, instead of inserting one at a time. My other 
experiments give similar results, and in all cases all four data structures give running times that 
are within a factor of 2 of each other. 

|j 18000 

* 16000 
1 
a 14000 

Create A 

H h Skip List 
a B Treap 
« e> Treap (union) 
x x Splay 
* * Red-Black 

200 400 600 800       1000      1200 
n*1000 nodes 

Figure 3.3:     Time to create various data structures from n random keys on a single processor of a SUN 
Ultra Enterprise 3000. 

Next I show the results of union on one processor. Figure 3.4 shows the runtime for the union 
operation on treaps of various input sizes n and m, where the keys are random integers over the 
same range of values. Notice that the x-axis specifies the sum of the treap sizes n + m and each 
curve is for unions where one tree size stays fixed. As the graph shows the lines rise rapidly until 
m - n and then rise more slowly. This change reflects the symmetry of the changing roles as the 
one tree switches from being the smaller to the larger. The envelope of the lines give the linear 
union times when n = m. Thus, one can see the sublinear times when the tree sizes are unequal. 

Another advantage to the treap algorithms is that they take advantage of the "easiness" of the 
data distributions. Union, intersection and difference take less time on sets that do not have finely 
interleaving keys than sets that do, even when they are not the versions using fast splits and joins. 
Figure 3.5 shows the runtimes on one processor to take the union (without fast splist and joins) 
of a tree with a million nodes and a tree with 16 thousand nodes for a varying number of blocks. 
Each tree has equal size blocks such that the k blocks from each each interleave in the set union. 
The maximum number of blocks is the size of the smaller tree. 

Finally, Figure 3.6 shows the times on one processor for union, intersection, and difference. The 
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Figure 3.4:    The sublinear time to find the union of two treaps of size m and n.  Each line specifies the 
times on one processor of a SUN Ultra Enterprise 3000 for fixed n, as indicated, while m varies. 
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Figure 3.5:    Time on one processor of a SUN Ultra Enterprise 3000 to find the union of a treap of size IM 
nodes (lgn = 20) and a treap of size 16K nodes (lgm = 14) for a varying number of blocks. 

keys are from two uniform random distributions of the same range.   Again we see the sublinear 
times similar to those for union. 

3.4.2    Parallel experiments 

The parallel versions of the treap operations are simple extensions to the C code in which it spawns 
threads for the two recursive calls. In Cilk this requires adding the cilk keyword before each 
function definition, the spawn keyword before each recursive call, and the sync keyword after the 
pair of recursive calls so that the parent thread waits for both calls to complete before continuing. 
As discussed below, I also use my own memory management and stop making parallel calls when 
reaching a given depth in the tree. 

In my first effort to implement the parallel algorithms in Cilk, I used nonpersistent versions and 
relied on the Cilk memory-management system to allocate and deallocate the nodes of the trees. 
The results were disappointing, especially for the difference operation where times were worse on 
more processors than on fewer processors. The slow down was due to two factors. One factor was 
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Figure 3.6:    Time on one processor of a SUN Ultra Enterprise 3000 to take the union of a treap of size IM 
(lg n = 20) with a treap of size m and the intersection and difference of the result with the second treap in 
the union. Each treap has keys drawn randomly from the same range of values. 

due to small-grain memory allocations/deallocations, the size of a treap node. To ensure that the 
memory operations are atomic and independent, Cilk uses a memory lock. Because the granularity 
is small, there was high contention for the memory lock. The second factor was that the cache lines 
on the SGI are long, 128 bytes (32 words), so that 8 treap nodes share the same cache line. In the 
nonpersistent version of the code when two processors write to different nodes on the same cache 
line, called "false sharing", the processors need to exchange the cache line even though they are 
not sharing nodes. The treap operations result in a large amount of false sharing. 

To solve the first problem, I wrote my own memory management system for the tree nodes on 
top of Cilk's. It allocates tree nodes from a large area of memory allocated by Cilk. It divides this 
memory into smaller blocks of consecutive memory, and gives each processor one block from which 
to allocate tree nodes. Every time a processor runs out of nodes in its block, it gets a new block. 
In this way, a processor only acquires a lock when it needs a new block. This system assumes some 
form of copying garbage collection (either automatic or called by the user explicitly) since memory 
is allocated consecutively and never explicitly deallocated. I did not implement a garbage collector 
for the experiments but I did measure the time to copy a treap and it is very much less than the 
time to create it. In addition, my memory management is specialized to allocate only one fixed-size 
space, a tree node. Cilk's memory management is more general and needs to manage allocations 
of any size. 

To solve the false sharing problem I converted my initial nonpersistent implementations into 
persistent versions. These versions write only to newly allocated nodes within a processor's own 
block of memory (they never modify an existing node). The cost of persistence varies. Consider the 
cost on a single processor. For union, which allocates the 0(rn log(n/ra)) new nodes, the persistent 
version is slower than the nonpersistent version by a modest 9%, when m is small compared to 
n, and 50%, when m = n. When the result of an intersection is small relative to the input sizes, 
the persistent version is 35% faster than the nonpersistent version. When the result is large the 
persistent version is 30% slower. For set difference the persistent version is 12%-23% faster than the 
nonpersistent version. For multiple processors the speedup is consistently better for the persistent 
version. For example, for intersection on 8 processors of the SGI Power Challenge the speedup is 
about 6.5 for the persistent version and 5.0 for the nonpersistent version. 
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Another improvement I made was to revert to sequential code after spawning threads to a 
certain recursive call depth. That is, every time the execution of the code applies another recursive 
call, it decrements a counter. Once the counter reaches zero it applies a recursive call to a non-Cilk 
procedure that only makes calls to C procedures. The C procedure is exactly like the Cilk one 
except it does not use Spawn and Sync. In this way, the C procedure avoids the overhead of the 
Cilk function call, which is about three times the overhead of a C function call [107]. In Figure 3.7 
I show the times for union when I vary the depth at which the code reverts to C. Notice that as 
the depth decreases the times improve and then get worse. If it reverts to C too soon, the problem 
size on which the threads have to work can vary greatly and there are not enough threads to get 
sufficient load balancing. The run times for different data sets, therefore, vary quite widely. For 
larger depths, the execution incurs more Cilk overhead; the run times over different data sets, 
however, are more consistent than for smaller call depths. 
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Figure 3.7:     Times on four processors of a SUN Ultra Enterprise 3000 to find the union of a treap of size 
IM (lg n = 20) with a treap of size m. Each line shows a different call depth at which the Cilk run reverted 
to sequential code. The left graph shows that the times for different data sets do not vary much when the 
depths are large. The right graph shows that the times for different data sets vary quite widely when the 
depth is 6 and 9. 

Finally, Figure 3.8 shows speedups for up to 5 processors of the SUN Ultra Enterprise 3000 and 
up to 8 processors of the SGI Power Challenge. The times are for finding the union of two 1-million 
node treaps, and finding the intersection and difference of the result treap with one of the input 
treaps to union. The speedups are between a factor of 4.1 and 4.4 on 5 processors of the Sun and 
a factor of 6.3 and 6.8 on 8 processors of the SGI, which is quite reasonable considering the high 
bandwidth requirements of the operations. 

3.5    Discussion 

I considered parallelizing a variety of balanced trees (and skip lists) for operations on ordered sets. 
I selected treaps because they are simple, fully persistent (if implemented appropriately), and easy 
to parallelize. It is hard to make a definitive argument, however, that one data structure is simpler 
than another or that the "constant factors" in runtime are less since it can be very implementation 
and machine dependent. I therefore supply the code and experiments as data points. In terms of 
asymptotic bounds I believe I present the first parallel algorithms for set operations that run in 
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Figure 3.8:    Speedup for the union of a IM node treap with a IM node treap, and the intersection and 
difference of the result with the same second IM node treap. 

0(mlog((n + m)/m))) expected work and polylogarithmic depth, and similarly for the block metric 
with k blocks the first parallel algorithm that runs in 0(Hog((n + m)/k))) expected work. 

I finish by briefly describing a parallel union algorithm for skip-lists that uses an approach 
similar to my algorithm on treaps. Recall that in a skip list every element is assigned a height 
h > 1 with probability 2~h, and has h pointers Pi,l < i < h which point to the next element in 
sorted order with height > iß To merge two sets represented as skip lists, pick the set with the 
greater maximum height (or an arbitrary one if the heights are the same) and call this A and the 
other set B. Split A and B using the elements of height h in A, recurse in parallel on the split 
regions, and join the results. For two sets of size n and m this algorithm has expected parallel 
depth O(lgnlgm). With the appropriate extensions (including back pointers) splits and joins can 
be implemented to run with the same bounds as fast joins and splits in treaps. Using a similar 
argument as used in Theorem 3.9 I conjecture that the total expected work for this union with skip 
lists is 0(k\og((n + m)/k)) with k being the number of blocks. The main disadvantage with skip 
lists is that they are much more difficult to make persistent. 

§More generally for a parameter 0 < p < 1, the probability of being assigned height ft is (1 - p)ph~1. 



Chapter 4 

Pipelining with Futures 

In this chapter I show how the depth of the algorithms in the previous chapter can be reduced by 
a log factor, by using pipelining.* The approach, however, is more general and can be applied to a 
variety of algorithms. More importantly, the pipelining model allows the pipeline to be managed 
automatically. Managing the pipeline does not have to be coded explicitly, making the code much 
simpler. A runtime system schedules and manages the pipeline implicitly. 

4.1    Introduction 

Pipelining in parallel algorithms takes a sequence of tasks each with a sequence of steps and 
overlaps in time the execution of steps from different tasks. Due to dependences between the tasks 
or the required resources, pipelined algorithms are designed such that each task is some number 
of steps ahead of the task following it. Pipelining has been used to improve the time of many 
parallel algorithms for shared-memory models. Paul, Vishkin and Wagener described a pipelined 
algorithm for inserting m new keys into a balanced 2-3 tree with n keys [92]. They first considered a 
nonpipelined algorithm that has O(logm) tasks, each of which takes O(logn) parallel time (steps), 
for a total time of O (log n log m) on an EREW PRAM. Each task works its way up from the bottom 
of the insertion tree to the top, one level at a time. They then showed how to reduce the time to 
O(log m + log n) by pipelining the tasks through the tree. The idea is that when task i is working 
on level j of the tree, task i + 1 can work on level j — 1, and so on. 

Cole used a similar idea to develop the first O(logn) time PRAM sorting algorithm that was 
not based on the AKS sorting network [37]; the AKS sorting network [3] has very large constants 
and is therefore considered impractical. The algorithm is based on parallel mergesort, and it uses a 
parallel merge that takes 0(log n) time. The natural implementation would therefore take O(log2 n) 
time—the depth of the mergesort recursion tree is O(logn) and the merge task at level i from the 
top takes 0(logn — i) time. Cole showed, however, that the merge tasks can be pipelined up the 
recursion tree so that each merge can pass partial results to the node above it before it completes, 
and that this leads to a work-efficient algorithm that takes O(logn) time. The basic idea of Cole's 
mergesort was later used in a technique called cascading divide-and-conquer, which improved the 
time of many computational geometry algorithms [8]. 

Although pipelining has lead to theoretical improvements in algorithms, from a practical point 
of view pipelining can be very cumbersome for the programmer—managing the pipeline involves 
careful timing among the pipeline tasks and assumes a highly synchronous model. The central idea 

'This chapter is in large part taken from [18] 
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is to show that many algorithms can be automatically pipelined using futures, a construct designed 
for parallel languages [46, 12]. Using futures, coding the pipelined algorithms is remarkably simple- 
we push the complexity of managing the pipeline and scheduling the threads to a single provably- 
efficient runtime system. In addition, my approach is the first that addresses asynchronous pipelined 
algorithms where the pipeline depth is dynamic and depends on the input data. I present and 
analyze several algorithms that require such an asynchronous pipeline. The approach also gives a 
natural way to restrict algorithms so they have no concurrent memory accesses. 

The futures construct was developed in the late 70s for expressing parallelism in programming 
languages and has been included in several programming languages [56, 73, 32, 35, 33] Conceptu- 
ally, the future construct forks a new thread tx to calculate a value (evaluate an expression) and 
immediately returns a pointer to where the result of h will be written. This pointer can then be 
passed to other threads. When a thread t2 needs the result of tu it uses its pointer to request the 
value If the value is ready (has been written) it is returned immediately, otherwise t2 waits until 
the value is ready. To avoid deadlocks and for efficiency t2 is typically suspended while waiting so 
that other threads can run. 

To analyze the running time of algorithms programmed with futures I use a two step process 
I first consider a language-based cost model based on futures and analyze the algorithms in this 
mode . I then show universal bounds for efficiently implementing the model on various machine 
models. The language-based model uses a slight variation of the PSL model [52]. In this model 
computations are viewed as dynamically unfolding directed acyclic graphs (DAGs), where each node 
is a unit of computation (action) and each edge between nodes represents a dependence implied by 
the language. There are three types of dependence edges in the DAG, thread edges between two 
successive actions in a thread, fork edges from the node that creates a future to the first node of 
the future's thread, and data edges from the result of a future to all the nodes that request the 

T™ TJie C°St °f a comPutation is then calculated in terms of total work (number of nodes in 
the DAG) and the depth (longest path length in the DAG). Analyzing an algorithm in the model 
involves determining the work and depth of the algorithm as a function of the input size. 

As an example of the use of futures and of the DAG cost model consider Figure 4 1 This 
example has a producer that produces a list of decreasing integers from n down to 0, where each 
cons cell is created by its own thread. In parallel, a consumer consumes these values by summing 
them. This code pipelines producing and consuming the values. 

I describe and analyze four algorithms with the language-based model. The first is a merging 
algorithm. It takes two binary trees with the keys sorted in-order within each tree and merges them 
into a single tree sorted in-order. The code is very simple and, assuming both input trees are of size 
n the nonpipehned parallel version requires 0(log2n) depth and 0(n) work. I show that, by using 
the same-code but implementing it with futures, the depth is reduced to O(logn), which meets 
previous depth bounds. The next two algorithms use a parallel implementation of the treap data 
structure [103]. I show randomized algorithms for finding the union and difference of two treaps 
of size m and n,m < n in 0(logn + logm) expected depth and 0(mlog(n/m)) expected work 
Like the merge algorithm, the code is very simple. There are no previous parallel or pipelined 
results for treaps of which I am aware. The fourth algorithm is a variant of Paul, Vishkin and 
Wagener s (PVW) 2-3 trees [92]. As the bottom-up insertion used in the PVW algorithm does not 
map naturally into the use of futures, I describe a top-down variant that does. As with the PVW 
algorithm the pipelining improves the algorithm complexity for inserting m keys into a tree of size 
n from O (log n log m) to O (log n + log m) depth. In both cases the work is O(ro log n). 

To complete the analysis I next consider implementations of the language-based model on 
various machines.   The work and depth costs along with Brent's scheduling principle [29] imply 
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datatype list = cons of int*list I null; 

fun produce(n) = 

if (n < 0) then null 
else cons(n,?produce(n-l)); 

fun consume(sum,null) = sum 
I consume(sum,cons(a,l)) = consume(a+sum,1);       ? 

produce 
consume(0,?produce(n)); n<0 

Figure 4.1: Example code and the top of the corresponding computation DAG. The code syntax is based 
on ML described at the end of this chapter. Futures are marked with a question mark (?). Each node 
represents an action and each vertical sequence of actions represents a thread. The vertical edges are thread 
edges, the edges going to the left are fork edges and the edges going to the right are data edges. The 
cons(a.l) in the consume code refers to pulling apart the cons cell into its two components, a and 1. 

that, given a computation with depth d and work w, there is a schedule of actions onto processors 
such that the computation will run in w/p + d time on a p processor PRAM. This principle, 
however, does not tell us how to find the schedule online—in particular it does not address the 
costs of dynamically assigning threads to processors nor the cost of handling the suspension and 
restarting required by futures at runtime. Since many of the algorithms are dynamic, the schedule 
cannot be computed offline. In addition, Brent's scheduling principle in general assumes concurrent 
memory access, requiring an implementation on a CRCW PRAM. The two key points are that all 
the scheduling and managing of futures can be handled by a runtime system in an algorithm- 
independent fashion with provable time bounds, and that by placing a restriction on the program 
type, we can guarantee the computation will require no concurrent memory accesses. The universal 
results place bounds on the time taken by an implementation on various machine models, including 
all online costs for scheduling and management of futures. 

Previous results on implementing a model similar to the one use here [52] have shown that 
any computation with w work and d depth can be implemented online on an CRCW PRAM in 
0(w/p+d-Tf(p)) time, where Tf(p) is the time for a fetch-and-add (or multiprefix) on p processors. 
The fetch-and-add is used to manage queues for threads that are suspended waiting for a future to 
complete. For programs that are converted to a form called linear code, any computation can be 
implemented on the EREW PRAM model in 0{w/p + d-Ts{p)) time, where Ts(p) is the time for a 
scan operation (all-prefix-sums) used for load balancing the tasks. The implementation also implies 
time bounds of 0{gw/p+ d(Ts{p) + L)) on the BSP [109], where g is the BSP gap parameter and 
is inversely related to bandwidth and L is the BSP periodicity parameter and is related to latency, 
0(w/p+ dlogp) on an Asynchronous EREW PRAM [42], and 0{w/p+ d) on the EREW Scan 
model [19]. The conversion to linear code is a simple manipulation that can be done by a compiler. 
Although this conversion can potentially increase the work and/or depth of a computation, it does 
not for any of the algorithms described herein. In fact, linear code seems to be a natural way to 
define EREW algorithms in the context of a language model. 
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When mapping algorithms onto a PRAM, this approach loses some time over previous pipelined 
algorithms. For example, the O(logn) depth, O(mlogn) work 2-3 tree algorithm mapped onto the 
PRAM becomes an 0(mlogn/p + logn ■ Ts(p)) time as opposed to 0(mlogn/p + logn) time 
for the PVW algorithm. Note, however, that when mapped directly onto more realistic models, 
such as the network models or the asynchronous PRAM, the algorithms perform equally well as 
the PRAM algorithms and with much simpler code: In the more realistic models, compaction 
using prefix sums has the same latency as either the memory read or write (network models) or 
the synchronization between steps (asynchronous PRAM). Furthermore, the approach can easily 
handle dynamic pipelines in which the structure and delays of the pipeline depends on the input 
data, such as the treap algorithms we describe. This would be considerably difficult to do by hand 
and I know of no previous PRAM algorithms with dynamic pipelines. 

4.2    The Model 

As with the work of Blumofe and Leiserson [27, 28], I model a computation as a set of threads and 
the cost as the size of the computation DAG. Threads can fork new threads using a future, and can 
synchronize by requesting a value written by another thread. A computation begins with a single 
thread and completes when all threads have terminated. 

A future call in a thread tx starts a new thread t2 to calculate one or more values and allocates 
a future cell for each of these values.* The thread tx is passed read pointers to each future cell and 
continues immediately. These read pointers can be copied and passed around to other threads, and 
at any point any thread that has a pointer can read its value. The thread t2 is passed write pointers 
to each future cell, which is where the results values are to be written as they are computed. The 
write pointers can also be passed around to other threads, but each can only be written to once. 
When a thread reads the value from a read pointer, sometimes called a touch operation, it must 
wait until the write to the corresponding cell has completed. As discussed in Section 4.4, the read 
is implemented by suspending the reading thread and reactivating it when the write occurs. Note 
that, although a future cell can be written to at most once, in general it can be read from multiple 
times. In Section 4.4 I show that when the code meets a certain condition called linearity the future 
cell is read at most once. 

To specify when it is necessary to read from a read pointer I distinguish between strict and 
nonstrict operations. An operation is strict on an argument if it needs to know the value of that 
argument immediately. For example, all the arithmetic operations are strict on their arguments, 
and an operation that extracts an element from a cell is strict on that cell. An operation is nonstrict 
on an argument if it does not need to know the value of that argument immediately. For example, 
passing an object to a user-defined function or placing an object in a cell are nonstrict because the 
actual value is not needed immediately and a pointer to the value can be used instead. Whenever 
an operation is strict on an argument and that argument is a read pointer to a future cell, executing 
the operation will invoke a read on that future cell. I also assume that writing to a future cell is 
strict on the value that is being written. This means that a read pointer cannot be written into a 
future cell, which prevents chains of future cells. This restriction is important for proving bounds 
on the implementation. 

Note that when building a data structure out of multiple cells, such as in a linked list or tree, 
operations are strict on the individual cells, not on the whole data structure. For example, if an 

fThe ability to return multiple values and have separate future cells created for a single fork is actually quite 
important for some of the algorithms I present. 
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operation examines the head of a linked list to get a pointer to the second element, the operation 
is strict on the head but not the second or any other element. I will make significant use of this 
property in the algorithms in this chapter. 

To describe the algorithms, I use a subset of ML [88] extended with futures. The syntax is 
defined at the end of this chapter (see Figure 4.12). The subset I use is purely functional (no side 
effects), and I use arrays only for the 2-6 tree algorithm described in Section 4.3.4 and otherwise I 
just use trees. Futures are created by placing a ? (question mark) before an expression, which will 
create a thread to evaluate the expression. The number of variables in an ML pattern determines 
the number of futures that an expression creates. I make significant use of the ML pattern matching 
capabilities, and have, therefore, included a quick description in the appendix. 

I now consider the DAGs that correspond to computations in the model. The DAGs are gener- 
ated dynamically as the computation proceeds and can be thought of as a trace of the computation. 
Each node in a DAG represents a unit-time action (the execution of a single instruction) and the 
edges represent dependencies among the actions. As mentioned in the introduction, there are three 
kinds of dependence edges in the DAGs: thread edges, fork edges, and data edges. A thread is 
modeled as a sequence of actions connected by thread edges. When an action a\ within a thread 
uses a future to start a thread £2> a fork edge is placed from oj to the first action in t2. When an 
action a± reads from a future-cell, a data edge is placed from the action a2 that writes to that cell 
to a\. The cost of a computation is then measured in terms of the number of nodes in the DAG, 
called the work, and the longest path length in the DAG, called the depth. In analyzing algorithms 
the goal is to determine the work and depth in terms of the input size. Determining the work is 
often simple since it is the time a computation would take sequentially if futures were not used. 
Determining the depth can be more difficult. As an aid I will refer to the time stamp of a value 
as the depth in the DAG at which it is computed, and will then find upper bounds on the time 
stamps of the results to determine the depth of the computation. 

The model, as defined here, is basically the PSL (Parallel Speculative A-Calculus) [52], aug- 
mented with arrays as in NESL [23]. Although the PSL only considered the pure A-Calculus with 
arithmetic operations, the syntactic sugar I include only affects work and depth by a constant fac- 
tor. I am actually assuming a slightly simplified model by considering only a first-order language 
(it cannot pass functions) since I do not need the more general case. I also explicitly mark where 
futures are to be created, while in the PSL model all expressions are implicitly made into futures. 

4.3    Pipelining Applications 

In this section I show four applications that use pipelining to reduce the depth of the algorithms. 
The first three applications require a dynamic pipeline because the time at which data becomes 
available for the next task in the pipeline varied from task to task. The last application is sychronous 
and the pipeline depth can be fixed. For each application I give the parallel algorithm, explain how 
to modify the algorithm to pipeline the computation, and give an analysis of the depth. 

4.3.1    Merging binary trees 

The first algorithm I discuss is a simple divide-and-conquer algorithm that takes two binary trees 
T\ and T2, where the keys in each tree are unique and sorted when traversed in-order, and merges 
them into a new sorted binary tree, Tm. The code is shown in Figure 4.2. The function split(s, T) 
splits a tree T into two trees, one with keys less than the splitter s and one with keys greater 
than or equal to s. The function traverses a path down to a leaf, separating subtrees based on the 
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1    datatype tree = node of int*tree*tree  |  empty; 

2 fun split(s,empty) = (empty,empty) 
3 I   split(s,node(v,L,R)) = 
4 if s < v then 
5 let val  (L1.R1) = ?split(s,L) 
6 in  (Li,node(v,Rl,R)) 
7 end 
8 else 
9 let val  (L1.R1) = ?split(s,R) 

10 in (node(v,L,Li),Rl) 
11 end; 

12 fun merge(empty,T2) = T2 
13 I   merge(Tl,empty) = Tl 
14 |   merge(node(v,L,R),T2) = 
15 let val  (L2.R2)  = ?split(v,T2) 
16 in node(v,?merge(L,Li), ?merge(R,Rl)) 
17 end; 

merge 

merge(L,L2) merge(R,R2; 

Figure 4.2:     Code for merging two binary search trees and a corresponding figure. The shaded re 
keys that are greater than the key at the root of Ti. 

gions are 

splitter to form the two result trees (see Figure 4.2). It requires work that is at most proportional 
to the depth of the tree. The function merge makes the root of Tj the root of the result tree Tm 

and splits T2 by the key at the root of Tx. It then calls merge recursively twice to make the left 
and right subtrees. 

The code is a natural sequential implementation for merging two binary trees, if we exclude the 
futures. Futures provide two forms of parallelism. First, they provide parallelism by allowing the 
two recursive merge functions to execute in parallel. If Tx is balanced and of size n then the merge 
will be called recursively to a depth of O(logn). If T2 is also balanced and of size TO then the split 
operation has O(logm) depth. Therefore, the overall depth of the algorithm is easily bounded by 
O(log n log TO). Second, and more importantly, futures provide pipelining by allowing the partial 
results of split (i.e., nodes higher in the tree) to be fed into the two merge calls, thereby allowing 
for the overlap in time of multiple split calls at different levels of the recursion tree. With such 
pipelining merge has depth O (log n + log TO). 

To appreciate this claim, let us consider the time (depth in the DAG) at which all nodes of the 
result trees, (L2,R2) = split(u,T2), are computed. If the roots of both L2 and R2 are created 
in constant time, and each child at a constant time after its parent, it is not hard to see that the 
algorithm would pipeline within O(log n + log TO) depth. The problem, however, is that one root 
may only be ready after a considerable delay. For example, in Figure 4.2 the root of L2 is ready 
only after traversing five nodes in T2. In addition, there may be further delays at lower levels of the 
tree. For example, there is a delay going from node a to node b in R2; b is created only after four 
nodes of L2 have been created. In general, the rightmost path of L2 and the leftmost path of R2 

are made from the nodes of T2 that split traversed, and the time stamp for a node in these paths 
is proportional to its depth in T2. These delays can accumulate when one split is pipelined into the 
next. To prove the bounds, however, I show that when there is a delay there is a corresponding 
decrease in the depth of the result tree. 
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Theorem 4.1 Merging two balanced binary trees of size n and TO, m < n, with keys sorted in-order 
takes O (log n +log m) depth and 0(mlog(n/m)) work. 

Proof. Given in the next section. It is a simplification of the proof for taking the union of two 
treaps. ■ 

A problem with the merge algorithm described is that even though the input trees may be 
balanced the resulting merge tree may have depth up to log n + log m. I now briefly describe how 
using pipelining, again, the unbalanced result can be balanced with 0(logn + logm) depth and 
0(n + m) work. First, the algorithm makes a pass through the tree computing the size of every 
subtree, which it stores at the root of the subtree. From the size data it next finds the rank of 
each node (its inorder index). Both steps take O(logn + log TO) depth and 0(n + TO) work and do 
not require pipelining. Next, it rebalances the tree using a parallel pipelined algorithm similar to 
merge. But this time it uses a split operation (similar to splitm in the next section) that takes 
a rank argument and splits the tree into nodes with rank less than the argument and nodes with 
rank greater than the argument. It returns these two trees along with the node with equal rank. 
The rebalancing algorithm takes four arguments: a tree, a rank, and the number of lesser and the 
number of greater rank nodes in the tree. It calls this split operation on the tree and the rank. 
It uses the node returned by the split operation as the root and then recursively balances the two 
subtrees. The recursive call for the left (right) subtree supplies a rank that is the old rank minus 
(plus) half the lesser (greater) subtree size. The analysis of the depth of the algorithm is similar to 
the analysis of union in the next section. 

4.3.2    Treap Union 

Treaps [103] are balanced search trees that provide for search, insertion, and deletion of keys and 
can be used for maintaining a dynamic dictionary. Associated with each key in a treap is a random 
priority value. The keys are maintained in-order and the priority values are maintained in heap 
order, thus the name treap. The key with the highest priority is the root of the treap. Because 
the priorities are random, this key is a randomly chosen key. Similar to quicksort recursion depth, 
treaps, therefore, have an expected depth of O(logn) for a tree with n keys. Treaps have the 
advantage over other balanced tree techniques in that they allow for simple and efficient union. As 
we will see, they have the added advantage that it is easy to parallelize them. 

I present two pipelined parallel operations on treaps—a union operation that takes the union 
of two treaps and can be used to insert a set of keys into a treap; and a difference operation that 
removes the values in one treap from another and can be used to delete a set of keys. Figure 4.3 
shows the code for finding the union of two treaps. It is similar to merge in the previous section 
except that it removes any duplicate values and maintains the treap conditions so that the result 
treap is balanced. It uses a modified split operation, splitm, where the splitter can be a key 
in the treap. When the splitter is in the treap, splitm excludes it from the resulting treaps and 
returns it along with the two split treaps. Otherwise, it simply returns the two resulting treaps. 
Notice that splitm completes as soon as it finds the splitter in the treap. 

To maintain the heap order union makes the root with the largest priority the root of the result 
treap (compare with merge, which always uses the root of the first tree). To maintain the keys 
in-order union splits the treaps by the key value of the new root. For one treap these are trivially 
the left and right children of the root. For the other treap the algorithm uses splitm with futures. 
It then recursively finds the union of the two treaps that have keys less than the root, and finds the 
union of the two treaps that have keys greater than the root. I show that the expected depth to 
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1 datatype treap = node of real*int*treap*treap 
2 I empty; 
3 datatype midval = mid of int I none; 

4 fun splitm(vi,empty) = (empty.none,empty) 
5 I splitm(s,node(p,v,l,r)) = 
6 if s=v then (l,mid(v),r) 
7 else if s<v then 
8 let val (ll.m.rl) = ?splitm(s,l) 
9 in (ll,m,node(p,v,ri,r)) 

10 end 
11 else 
12 let val  (ll.m.rl) = ?splitm(s,r) 
13 in (node(p,v,l,ll),m,rl) 
14 end; 

15 fun union(empty,b) = b 
16 I  union(a,empty) = a 
17 I  union(node(pl,ki,ll,rl), node(p2,k2,12,r2)) = 
18 if pi > p2 then 
19 let val 
20 (l,m,r) = ?splitm(ki,node(p2,k2,12,r2)) 
21 in node(pl, ki,  ?union(ll,l), ?union(rl,r)) 
22 end 
23 else 
24 let val 
25 (l.m.r)  = ?splitm(k2,node(pl,kl,ll,rl)) 
26 in node(p2, k2,  ?union(l,12),  ?union(r,r2)) 
27 end; 

Figure 4.3:     Code for treap union 

find the union of two treaps of size n and TO is 0(log n + log TO). Without pipelining the expected 
depth would be O(log n log TO). 

To analyze the depth of the algorithm let us "consider time stamps t(v) for each node v of a 
tree. The time stamp of a node is the depth in the DAG at which the node is created. For a tree 
T I use the notation v € T to be a node in T, h{v) to indicate the height of the subtree rooted 
at the node v (longest path length to any of its leaves), and l(v) and r(v) to indicate the left and 
right children of the node v, respectively. I use t{T),h(T),l(T),r{T) to mean t(v),h(v),l(v),r(v), 
respectively, where v is the root of T. 

Definition 1 A T-value is valid if, for all v£T, t{v) < T+ks(h(T)-h(v)), where ks is a constant. 

A T-value of a tree is some value that places an upper bound on each of the time stamps in 
the tree depending on the height of the subtree at the node. This definition means that r > 
max„eT{i(u) - ks(h(T) - h(v))}. These r-values capture a relationship between the height of 
subtrees and their time stamps which is important for the proofs of the time bounds. Notice, for 
example, that a r-value places the same upper bound on the time stamps for all leaves in the tree 
regardless of how far down they are in the tree. In the following theorem I show that, for each 
result treap of splitm, we can find a valid r-value that depends only on the result treap height, 
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the input treap height, and the input treap's r-value. In the analysis of union I keep track of the 
r-values of the input treaps to recursive calls to bound the time stamps in these treaps. 

Property 4.2 // r is a valid T-value for a tree T, then a valid r-value for a subtree T" is 

T + ks(h(T) - h(T')) 

Property 4.3 If r\ and rr are valid r-values for l(T) and r(T), respectively then a valid r-value 
for T is 

max{£(T), 77 - ks, rr - ks} 

Lemma 4.4 (Splitm r-values) Consider any split value s and any treap T with associated r- 
value r and let ks be the time between two successive recursive calls to splitm. If we call the 
splitm(s, T) function at a time t then, for each of the two results T' 6 {L', R'}, a valid r-value for 
T' is r' = max{«, r} + ks(l + h(T) - h(T')). 

A A 
Figure 4.4:     Split of treap T into L' and R'. The shaded areas are keys that are greater than the splitter. 

Proof. Assume that the splitter does not appear in the treap since this is the worst case (if the 
splitter is found then the split will return earlier). The proof uses induction on the height of the 
input treap. The lemma is clearly true when h(T) = 1. Assume it is true for treaps of height less 
than or equal toh — 1. We show it is true when h(T) = h. Let L = l(T) and R = r(T). Without loss 
of generality, assume that s is less than the key at the root of T, and let (L\,Ri) — splitm(s, L) 
(see Figure 4.4). First, find a valid r-value for the greater than result treap, R', by finding the 
time stamps for all its nodes. Consider the root of R'. Once the root of T is available union can 
obtain R and L, which may be futures, compare the key at the root with s, and call splitm, which 
returns immediately since it returns three futures. Thus, union has all the information needed to 
create the root of R' in constant time, ks, and t(R') = max{i,i(T)} + ks. Because r(R') = R, a 
valid r-value for r(R') is r + ks(h(T) — h(r(R'))) by property 4.2. Next we find upper bounds of 
the times in L\ and R\. 

The recursive call to splitm on L can be called at time max{£, r} + ks and, by property 4.2, a 
valid r-value for L is r + ks(h(T) — h(L)). Therefore, by the induction hypothesis a valid r-value 
T" for the resulting treap T" G (L\, Ri) is 

=   max{max{£, r} + ks, r + ks(h(T) - h(L))} + ks(l + h(L) - h(T")) 

<   m&x{t,r} + ks(l + h{T)-h{T")) (4.1) 
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Since l(R') = Rx and by property 4.3, a valid r-value for R' is 

T'   =   max{max{i,t(T)} + ks,r + ks(h{T) - h(r(R')) - 1), max{i,r} + ks(h{T) - h{l{R')))} 

<   m<ix{t,T} + ks(l + h(T)-h(R')) 

Finally, since V = L\, a r-value of V is a r-value for L\ as given in Equation 4.1. ■ 
Note that union only creates new treaps by dividing a treap into its left and right children or 

by running the splitm operation on it. Given the above lemma, we can find r-values for the treaps 
in all the recursive calls, and use these r-values to find upper bounds i(v) for t(v), the time stamps 
on the nodes v of the union result treap. 

Theorem 4.5 (Depth bound on Union) Consider two treaps Tx and T2 with r-values TX and 
r2. If we call union(T!,r2) at time t, then the maximum time stamp on any of the nodes of the 
result Tm will be max{£, n, r2} + 0(h(Ti) + h(T2)). 

Z^^ unionfr^T^) 

Figure 4.5: Union of treaps Ti and T2 into Tm, when the priority at the root of Ti is greater than the 
priority at the root of T2. T2 is split by ku the key at the root of Tj. The subtreap l{Tm) is the union of the 
subtreaps (not shaded) with keys less than kx and the subtreap r{Tm) is the union of the subtreaps (shaded) 
with keys greater than k\. 

Proof. Once the two roots of Tx and T2 are ready, union can compare their priorities, start up 
splitm and the two recursive unions, and create the root of the result treap Tm with pointers to 
the futures for its two children. This all takes constant time, km, because splitm and union are 
called with futures. Thus, t(Tm) < km + m&x{t, n, r2}. This upper bound km + max{i, n, r2} on 
the time stamp of the root of the result treap will be referred to as i(Tm). 

We now calculate i{l{Tm)), an upper bound on the time stamp of the left child of the root of 
the result treap, in terms of i(Tm). Consider the two treaps T[ and T\, which are the inputs to 
the left call to union, and Tl

m = l(Tm) which is the result of the call. Without loss of generality 
consider the case when the priority of Ti is greater than the priority of T2. Then T[ = l(Tx) and 
Tl

2 is the left result of splitm(/?i, T2), where kx is the key at the root of Ti, see Figure 4.5. Due to 
the previous bound on the splitm operation, a r-value for T2 is 

r\   =   max{t{Tm),r2} + ks(l + h(T2)-h{Ti,)) 

< t{Tm) + ks{\ + h(T2) - h{Tl
2)) 

By property 4.2, a r-value for T[ is 

r[   =   n + ksihiTJ-hiTl)) 

< *(Tm) + A;s(/i(T1)-/i(T1
/)). 



66 CHAPTER 4.   PIPELINING WITH FUTURES 

These, along with the condition at the beginning of the proof, give an upper bound on the time 
stamp of Tl

m: 

t{Tl
m)    <    Am + max{*(rm),r/,7^} 

<    f(Tm) + Ä;m + ^max(/i(r1)-/i(ri'),l + /i(r2)-/i(r^)). 

That is, the only way the bound on the time stamp of a child can be km + S • ks more than its 
parent's bound is by a corresponding height decrease of either <5 in the depth of T\ or S - 1 in T-i- 
Because union removes the root of T\, S > 1. We can show the same bound for r(Tm). 

Now consider a path in Tm from the root to a leaf. Let A,- = i(c) — i(v), where c is a child of v 
and v is a node at depth i - 1. Let hlj,j = 1,2 be the height of the input treaps of the union that 
created c. From the above discussion and j = 1(2) and k = 2(1) 

A,-    <    km + ks max(/»;-1 -h),l + tik7
l - h\) (4.2) 

<    km + ksih^-hi + h^-hi + l). 

Since the algorithm terminates whenever one of the input treaps has height 0, and the height of at 
least one of the treaps decreases by one for each recursive call, the depth of the recursion treap is 
at most 0(h(Ti) + h(T2)). Therefore, the total increase in the bound on the time stamps along the 
path to any new node is J2 A; < {km + 2ks)(h(T1) + /J(T2)). Since the time stamp on the root is 
bound by km + max{t, T\, r2} and the path bound is true for all paths, this bounds the time stamp 
on any new node in Tm by max{i, ri, r2} + 0(h(T\) + /i(T2)). The untouched nodes are also clearly 
similarly bounded. ■ 

Corollary 4.6 (Expected union depth) The expected depth to find the union two treaps of size 
n and m is 0(log n + log m). 

Proof.     We assume that the treaps are "ready" when union is called at time t. That is, the treaps 
have valid r-values, rY and r2, with T\ < t and r2 < t. Since the expected heights of the two treaps 
is O(logn) and O(logm) [103], the expected depth to find the union is 0(logr?. + logm). ■ 

I now return to the proof of depth on the merge computation described in the previous section. 

Proof. (of Theorem 4.1) The proof for the depth bound on merge is the same as for the depth 
bound on union, except that we do not need to consider the case when T\ is split. Thus, in 
Equation 4.2, j = 1 and k = 2. Since h{T{) = log n and /i(T2) = log m, to merge the two trees takes 
0(logn + logm) depth. The proof the the work bound for merge is easier than for union because 
the input trees are balanced. Union requires an expected case analysis. ■ 

4.3.3    Treap Difference 

The inverse operation to taking the union of two treaps is taking their difference; remove any keys 
from the first treap that appear in the second treap. The diff algorithm is, again, quite simple 
and uses two operations splitm (shown previously in Figure 4.3) and join (shown in Figure 4.6). 
The join operation is the inverse of split—it takes two treaps, Ti and T2, where the largest key 
in T\ is less than the smallest key in T2, and joins them into a single treap, T'. A join only requires 
0(h(Ti) -f ^(T2)) work since it need only descend the rightmost path of T\ and the leftmost path 
of T2, interleaving the nodes depending on their associated priorities. 

The function diff takes two treaps, Tj and T2, and returns a treap Tj which is T\ with any 
keys in T2 removed.  First, it calls splitm on T2 and the key at the root of T\ as the splitter to 
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1 fun join(empty,b) = b 
2 | join(a,empty) = a 

3 I join(node(pl,kl,ll,rl), 
4 node(p2,k2,12,r2)) = 
5 if pi > p2 then 

6 node(pl,ki,ll,?join(rl,node(p2,k2,12,r2))) 
7 else 

8 node(p2,k2,?join(node(pl,kl)ll,ri),12),r2); 

9 fun diff(empty,b) = empty 

10 I diff(a,empty) = a 

11 I diff(node(pl,kl,ll,rl),t2) = 

12 let val (12,m,r2) = ?splitm(ki,t2); 

13 val 1 = ?diff(ll,12); 

14 val r = ?diff(rl,r2); 

15 in if m = none then node(pl,ki,l,r) 
16 else ?join(l,r) 
17 end; 

Figure 4.6:     Code for taking the difference of two treaps. 

obtain two treaps, l2 and r2, and possibly the splitter. Next, diff recursively finds the difference 
of /(2i) and l2 and the difference of r{Tx) and r2. If the root key of Tx was not in T2 the results 
of the recursive calls become the left and right branches of the root. Otherwise, the root and its 
subtreap is replaced by the join of the two treaps resulting from the recursive calls. As in union, 
without pipelining it takes 0(h{T^)h{T2)) depth to descend to the bottom of the recursion call tree. 
On the way back up, a path may contain as many as mm(h(T1),m) nodes to delete, where m is 
the size of T2. Each such node can add 0(h(Td)) depth due to the required join. Thus, the overall 
depth for diff not considering pipelining is 0((fr(Ti)/>(T2) + h(Td) min(/i(T1), m)). 

The pipelining for diff is notably different from the pipelining for union because the algorithm 
requires work after the recursive calls (the join) as well as before them (the split). Interestingly, if 
we make the algorithm tail recursive by doing the join before the recursive call, the algorithm does 
not pipeline (besides having an increased work measure) because the join can not take place until 
after the split is complete. The pipelining while descending T\ is much like the tree merge, except no 
actual merging takes place, and therefore that part of the computation DAG has 0{h{T{) + h(T2)) 
depth. I next show that the ascending phase of the algorithm takes O(h(Ti) + h(Td)) depth. First I 
show the worse-case time stamps on the results of a join. Then, I show the worse case time stamps 
on the final result treap. I use the same definitions as in Section 4.3.2, except I replace r-values 
with a similar concept of p-values. 

Definition 2 Let dT(v) of a node v € T be the depth of the node in the tree, such that the dT(T) = 
0, dT(l{T)) = dT(r(T)) = 1,.... A p-value is valid for a tree T if, for all v 6 T, t(v) <p + k dT(v), 
where k is a constant. 

That is, a valid p-value for a tree T defines upper bounds for the time-stamps of the tree, 
namely for all v £ T, t(v) < p + kdT(v), where A; is a constant. In contrast to r-values, /rvalues 
are independent of the heights of the subtrees. 

Property 4.7 If p is a valid p-value for T then p is a valid r-value for T. 
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Property 4.8 If T is a valid r-value for T then T + kh(T) - 2 is a valid p-value for T. 

join rA 
Figure 4.7: Join of treaps T\ and Ti into T', when the priority at the root of Tj is greater than the priority 
at the root of T%. 

Lemma 4.9 (Join p-values) If join is called at time t on two treaps T\ and T2 with valid, p- 
values p\ and P2, then a valid p-value for the resulting joined treap T" is p' = max{£,pi,p2} + k, 
where k is a constant at least as large as the maximum computation DAG depth between successive 
recursive calls to join. 

Proof. We find upper bounds of the time stamps of each node of the T' by induction on the size of 
X". Let n be the size of X". The lemma is clearly true when the size of the result treap is 1. Assume 
it is true for result treaps of size n — 1. We show it is true for result treaps of size n. Since join 
can test the root priorities, receive a pointer to the future which is the result of the recursive call 
to join, and create the root node of T' in constant depth k, once the roots of T\ and Ti are ready, 
t(T') = m&x{t,px,p2} + k. Call this value />'. Without loss of generality, assume that the priority of 
the root of 1\ is greater than the priority of the root of X2 (see Figure 4.7). Because l(T\) = l(T'), 
then for all v £ l(T'),t(v) < p\ + kdjx{v) < p' + kdfi{v), since the depth of v is the same in Ti as 
in X". By the induction hypothesis we can find the time stamps on r(T') = join(r(Xi),X2), since 
the size of r(Xi) is less than n. A valid p-value for r(T\) is p\ + k. Therefore, a valid p-value for 
r(X") is max{p', p\ + k,p2} + k = p' + k. Since w's depth in r(T") is 1 less than its depth in T", 
t[v) < p' + kdT'(v) for all v £ r(T'). Thus, p' is a valid p-value for V. ■ 

Theorem 4.10 (Bound on difference depth) If diff (Ti, T2) is called at time t and valid p- 
values for T\ and T2 are p\ and p2, then the maximum time stamp on the result treap Td is 
max{t,p1,p2} + 0{h(T1) + h{T2) + h(Td)). 

Proof. Let A; be a constant greater than the maximum computational DAG depth between 
successive recursive calls to splitm, join, and diff. Since p\ and P2 are valid r-values for T\ and 
X2 by Property 4.7 and using the same arguments as in Theorem 4.5, after max{i, pi, p2}+0(h(Ti) + 
h(T2)) depth in the computation DAG, diff has reached the bottom of every recursive path (either 
lines 9 or 10 in Figure 4.6 applies) and every future result of splitm has been computed. Thus, by 
property 4.8 there exists a constant p' = max{i, Pi, P2} + 0{h{T\) + h(T2)) which is a valid p-value 
for all trees (treaps 1 and r on lines 13 and 14) that are the result of these calls at the leaves of 
the call tree. At this point we can find p-values for the results of each recursive call to diff. Let 
pi and pr be valid p-values for the results treaps 1 and r. Because the recursive calls to diff are 
called with futures, the call to join is always made by max{p/, pr}. By Lemma 4.9 a valid p-value 
for result of the diff recursive call is max{p/,pr} + k (compare with the definition of the height 
of a tree). But since all the result treaps at the leaves of the recursive call tree have p' as a valid 
p-value and the height of the recursive call tree is no more than h(Ti), a valid p-value for the treap 
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array_split 

Figure 4.8:    The DAG for an array_split on an array of length 11. 

at the root of the call tree must be p' + kh{Tx). By definition of Rvalues, the time stamp of the 
deepest node in that treap is p' + 0(h(Tx) + h{Td)) = max{i, pup2} + 0(/l(T1) + h{T2) + h(Td)). 

u 

Corollary 4.11 (Expected difference depth) The expected depth to find the difference of two 
treaps of size n and m is 0(log n + log m). 

Proof. Since the expected height of the two input treaps are O(logn) and O(logm) and the 
expected height of the result treap is 0(log(n - m)), the expected depth to find the difference is 
0(logrc + logm). m 

4.3.4    2-6 Trees 

We can obtain a pipelined variant of top-down 2-3-4 trees using 2-6 trees. It is analogous to the 
bottom-up pipelined 2-3 trees of Paul, Vishkin and Wagener [92]. Each node of a 2-6 tree has 1 to 
5 keys in increasing value and one child for each range defined by the keys. The children are 2-6 
trees with key values within their range. Every key appears only once, either in internal nodes or 
at the leaves, and all leaves are at the same level. I refer to the keys in the tree as splitters. 

I consider the problem of inserting a set of sorted keys into a 2-6 tree. For this problem I use 
an array primitive array_split, which splits a sorted array of size m into two arrays, one with 
values less than the splitter and one with values greater than the splitter. In my cost model I define 
this operation to have 0(1) depth and 0(m) work—in the DAG I view the operation as a DAG of 
depth 2 and breadth m (see Figure 4.8).* First consider inserting an ordered set of keys in which 
there is at least one key in the 2-6 tree between each pair of keys to be inserted. I call such an 
array a well-separated key array. Later, I show how to insert any ordered set of keys. 

If the-root of the 2-6 tree has more than three children, the algorithm insert splits the root 
into two 2-3 nodes (nodes with 2 or 3 children) and creates a new root using the "middle" splitter 
and these new 2-3 nodes as children. From now on insert maintains the invariant that the root 
of the tree into which it is inserting is a 2-3 node. It does so by always splitting any child, as 
necessary, before applying a recursive call on that child. Every time it splits a child it needs to 
include one of the child's splitters into the root. But since the root has at most two splitters and 
three children (by the invariant), the resulting root will have at most five splitters and six children. 

To insert an ordered well-separated key array, insert first splits the keys by the smallest splitter 
at the root into two arrays using the array .split primitive. It will insert the first of the two arrays 

*The reader might argue that the split operation should have depth greater than O(l) because of the need to 
collect the two sets of values. I show in Section 4.4, however, that the cost of the array-split is fully accounted for 
in the implementation. 
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into the left child. If there is no second splitter, it will insert the second key array into the right 
child. Otherwise, it splits the second array by the second splitter and will insert the resulting key 
arrays into the middle and right children. Before recursively inserting a key array into a child, 
insert first checks whether the child needs to be split to maintain the 2-3 root node invariant. 
When a child is split, it obtains a new splitter and two new children. It uses the new splitter to split 
the key arrays into two arrays that it will insert into the two new children. Next it recursively inserts 
the key arrays into the appropriate children to obtain new children for the root. Eventually, insert 
will reach a leaf node, which must be a 2-3 node by the invariant. Because of the requirement that 
there is always at least one key in the 2-6 tree between each key to be inserted, there can be at 
most 3 keys that need to be inserted in any one leaf; these keys can be included in the leaf without 
having to split the node. Note that the height of the tree increases by at most one, when the root 
of the tree was split. 

If insert uses futures when making its recursive calls, then it traverses the different paths down 
the tree in parallel by forking off new tasks for each recursive call. Since the paths are at most 
log n long, inserting an ordered well-separated key array of size m into a 2-6 tree of size n takes 
0(log7z) depth and 0{mlog n) work. No pipelining is needed. 

To insert an arbitrary ordered set of keys of size m, insert first forms a balanced binary tree 
of the keys (conceptually), and then creates a list of arrays of keys, where each array is made up of 
the keys from one level of the tree. Thus, the first array contains the median key, the next array 
contains the first and third quartiles, and so on. It then successively inserts each array into the 
2-6 tree using the tree returned by the previous insertion, see Figure 4.9. By inserting the keys 
in this manner, insert guarantees that for any array of keys, there is at least one key in the 2-6 
tree between each pair of keys in the array, because it has inserted such keys previously. Without 
pipelining, inserting the logm arrays into a tree of size n would require O(lognlogm) depth and 
0(m log n) work. 

<m> <g,r> <a,k,o,w> 

insert / \      insert    ••• 
O(logn)   /        \0(logn) 

Figure 4.9: Inserting an ordered set of keys into a 2-6 tree of size n. The array (items inclosed in angle 
brackets <>) at the root of a tree is the well-separated key array to be inserted in the tree. First insert the 
median <m> into the tree (dark shading). Next insert the first and third quartile <g,r> into the resulting 
tree (medium shading). Then insert the next well-separated array into the next resulting tree (light shading) 
and so on. Inserting each well-separated key array takes O(logn) depth. 

By simply making the recursive call that inserts a well-separated key array return a future 
(in addition to the futures used in its recursive calls), insert can pipeline inserting each array 
of keys into the 2-6 tree—no other changes to the code need to be made. The crucial fact that 
makes the pipelining work is that, in constant depth, insert can return the root node with its 
keys values filled in, although its children may be futures, see Figure 4.10. It can then insert the 
next well-separated key array in the list into this new root, which is the root of the 2-6 tree that 
will eventually contain the original and previous well-separated key arrays. With this structural 
information in the root the next insertion can also return the root in constant depth. Although it 
may need to wait a constant depth before the children nodes are ready, from then on the children 
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of all descendents will be ready when it reaches them. In this way there can be an array of keys 
being inserted at every second level and possibly every level of the 2-6 tree. 

<m> <aj^,w> 
x^l^s,      insert 

<9>  I    <r> 

Figure 4.10: Inserting an ordered set of keys into a 2-6 tree of size n using pipelining. An array (items 
inclosed in angle brackets <>) at the root of a tree is the well-separated key array to be inserted in the 
tree and refers to a future in the computation, a: First, the median <m> is inserted into the original tree 
(dark shading), b: As soon as the root node of the resulting tree is ready (medium shading), the first and 
third quartile <g,r> are inserted into it. The root is ready in 0(1) depth. The median <m> still needs to be 
inserted into a child of the original tree root (dark shading), the result of which is a future. When the future 
value is available it becomes a child in the second result tree (medium shading), c: The next well-separated 
array is inserted into the next resulting tree (light shading) and so on. 

Definition 3 v is a valid v-value for a 2-6 tree T, if for all v e T, t(v) < v + kbdT(v)), where t(v) 
is the time stamp for v, dT(v) is the depth of v in T, and kb is constant. 

Theorem 4.12 (Insertion into a 2-6 Tree) A set of m ordered keys can be inserted in a 2-6 
tree of size n > m in 0(log n + log m) depth and 0(m log n) work. 

Proof. First note that we can create a pipeline of well-separated key arrays from an arbitrary 
array of sorted keys. Each successive well-separated key array can be found in constant time, kw, 
given the indices of the keys that made up the previous key array. That is, the time stamp for ith 

key array is kw ■ i. Let T0 be the original 2-6 tree we are inserting into, and v0 be its associated 
valid v-value. Let T; be the resulting 2-6 tree after inserting the ith well-separated key array into 
T0. We will show that 

Vi+i = Vi + 3kb (4-3) 

are valid v-values for Ti+1, i = 0,..., log mß 

Assume Vi is a valid u-value for Tt- and kb is large enough such that u,- > kw(i + l). The insert 
function can start to insert the (i + 1)5< well-separated array once both it and the root of T; are 
available; that is, at time min(kw(i + l),u,-) = v^. In the worse case the root of T- needs to be 
split. It can do so in constant depth kr, since it has all the structural information it needs to create 
the new root and its two children. Again we assume kb is large enough such that kb > kr. This 
splitting result in a new intermediate tree T-, with a valid v-value Vi + kb. By induction on d we 
will find upper bounds on the time stamps of nodes at depth d of Ti+i. 

First we find t(Ti+1). Once the root of T/ or Tt- and its children are available insert can do all 
the work necessary to create the root of Ti+1. These nodes have time stamps at most Vi + 2kb. Then, 

5It is also possible to show that Vi+i = Vi + 2fcb 
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in constant depth, insert can split the keys, determine which children need to be split, determine 
any new keys and children that need to be added to the root of T-, split the key arrays by the new 
keys, and proceed with the recursive calls, which return futures to the children of the new root. Let 
this constant depth be k^. Thus, it has the structural information needed to create and return the 
root so that t(T{+i) = V{ + 3fc&. The recursive calls on nodes at depth 1 of T( are made by V{ + 3kb 
and these nodes and their children have time stamps no more than that. Therefore, by v + 4fc(, it 
can create the nodes at depth 1 of T!+i and proceed with the recursive calls on nodes at depth 2. 
In general, the recursive call on nodes at depth d occur by u, + (d + 2)ki and the nodes of T- at 
level d and level d+1 are also available at that time. Thus, the time stamps for a node at level d of 
T;+i is at most Vj + (d + 3)kb, proving equation 4.3 holds. Since there are log m well-separated key 
arrays, the final 2-6 tree has a valid v-value v + O(logm) and the tree has depth 0(log(m + n)). 
Therefore, the largest time stamp is no more than v + 0(log m + log n). 

It is easy to see that inserting m keys into a tree of size n using the above algorithm does 
no more work, within constants, than inserting the m keys one at a time. Since the latter takes 
O(mlogn) work so does the former. ■ 

4.4    Implementation 

In this section I describe an implementation of futures and give provable bounds on the runtime 
of computations based on this implementation. The bounds include all costs for handling the 
suspension and reactivation of threads required by the futures and the cost of scheduling threads 
on processors. The implementation is an extension of the implementation described in [52] which 
allows us to improve the time bounds and avoid concurrent memory access. 

The main idea of the implementation is to maintain a set of active threads S, and to execute 
a sequence of steps repeatedly, each of which takes some threads from S, executes some work on 
each, and returns some threads to S. The interesting part of the implementation is handling the 
suspension and reactivation of threads due to reading and writing to future cells. As suggested for 
the implementation of Multilisp [56], a queue can be associated with each future cell so that when 
a thread suspends waiting for a write on that cell, it is added to the queue, and when the write 
occurs, all the threads on the associated queue are returned to the active set S. Since multiple 
threads could suspend on a single cell on any given time step, the implementation needs to be able 
to add the threads to a queue in parallel. Previous work [52] has shown that by using dynamically 
growing arrays to implement the queues in parallel, any computation with w work and d depth will 
run in 0(w/p + d • T/(p)) time on a CRCW PRAM, where Tj(p) is the latency of a work-efficient 
fetch-and-add operation on p processors. 

By placing a restriction on the code called linearity, we can guarantee that every future cell 
is read at most once so that only a single thread will ever need to be queued on a future cell. 
This greatly simplifies the implementation and allows us to replace the fetch-and-add with a scan 
operation. A further important advantage of linearity is that it guarantees that the implementation 
only uses exclusive reads and writes to shared memory. The linearity restriction is such that any 
code can easily be converted to be linear, although this can come at the cost of increasing the work 
or depth of an algorithm. 

The linearity restriction on code is based on ideas from linear logic [50]. In the context of this 
dissertation linearizing code implies that whenever a variable is referenced more than once in the 
code a copy is made implicitly for each use [79]. The copy must be a so-called deep copy, which 
copies the full structure (e.g., if a variable refers to a list, the full list must be copied, not just the 
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head).1' Linearized code has the property that at any time every value can only have a single pointer 
to it [79]. This implies that there can only be a single pointer to a future cell and it can therefore 
only be read from once. Similarly it implies that there can only be exclusive read access to any 
value, even if it is not a future cell. Linear code has been studied extensively in the programming 
language community in the context of various memory optimizations, such as updating functional 
data in place or simplifying memory management [79, 113, 11, 2, 36]. 

Linearizing code does not affect the performance of any of the algorithms I considered in this 
chapter. For example, consider the body of the split code in Figure 4.2, lines 4-11. Figure 4.11 
shows the linearized version of the same code. The only variables that are read more than once 
refer to keys and splitters(v and s). Since it is no more expensive to copy v and s than to compare 
them, such copying does not affect the costs. The trees themselves are never referenced more than 
once—although, L and R appear once each in the then or the else part of the if statement, only 
one of these branches can be executed. The trees Lx and Rx appear twice in both then and else 
parts, but one case is simply defining them (lines 5 and 9) while the other actually references them 
(lines 6 and 10). 

1    datatype tree = node of int*tree*tree   I   leaf; 

2 fun split(s,leaf) = (leaf,leaf) 
3 1 split(s,node(v,L,R)) = 
4 let val (sa,sb) = copy(s); 
5 val (va,vb) = copy(v); 
6 in if sa < va then 

7 let val (Li.Ri) = ?split(sb,L) 
8 in (Ll,node(vb,Ri,R)) 
9 end 

10 else 
11 let val (L1.R1) = ?split(sb,R) 
12 in (node(vb,L,Ll),Rl) 
13 end; 
14 end; 

Figure 4.11: Linearized code for splitting two binary trees. Two copies of s and v are made so that no 
variable is referenced more than once. A variable that is referenced once in the then clause and once in the 
else clause of an if statement is referenced once overall because only one of the two clauses is executed. 
Similarly a variable must be referenced at most once in each function body. 

I now consider the main result of this section. The bounds are in terms of the EREW scan 
model [19], which is the EREW extended with a unit-time scan (all-prefix-sums) operation. The 
bounds on the scan model imply bounds of 0(w/p + dlogp) time on the plain EREW PRAM, 
0(gw/p+d(Ts+L)) on the BSP [109], and 0(w/p+dhgp) on an Asynchronous EREW PRAM [42] 
using standard simulations. 

Lemma 4.13 (Implementation of Futures) Any linearized future-based computation with w 
work and d depth can be simulated on an EREW scan model in 0(w/p+d) time. 

Proof. In the following discussion we say that an action (node in the computation DAG) is ready 
if all its parents have been executed and that a thread is active if one of its actions is ready. We 

1Note that to copy the structure, the copy must be strict on the full structure—all futures must be written before 
they can be copied. 



74 CHAPTER 4.   PIPELINING WITH FUTURES 

store threads as bounded-sized structures containing a code pointer and pointers to local variables. 
We store each future cell as a structure that holds a flag and a pointer. Initially the flag is unset; 
when the pointer is filled the flag is set. The pointer points to either a value or a suspended thread. 
We store the set of active threads S as an array. 

The algorithm takes a sequences of steps, each of which takes m = min{|5|,p} threads from S, 
executes one action on each thread, and returns the resulting active threads to S. We treat 5 as a 
stack so that threads are removed and added to the top of the stack. Let t be the largest index of 
an active thread on S. 

To take threads from S: 

1. Remove m threads from the top of 5. That is, processor i takes thread S[t — i], unless t — i < 0, 
in which case it does nothing this step. 

2. Decrement the stack pointer by m (t = t — m). 

The above operations take constant time. 
Next we show that each action takes constant time. 

1. If a thread with a read pointer to a future cell wants to read the future then 

(a) if the future cell has been set then dereference the pointer, 

(b) otherwise set the flag, write a pointer to itself into the future cell, and suspend. 

2. If a thread with a write pointer to a future cell wants to write a result then 

(a) if the future cell has been set then, read the future cell pointer, write a new pointer to 
the result, and reactivate the thread pointed to in the pointer just read, 

(b) otherwise write a pointer to the result and set the flag. 

3. Otherwise execute the action. 

To prevent both the writer and reader from accessing the flag concurrently we can assign even 
steps to the reader and odd steps to the writer." Thus, reading from and writing to a future cell 
takes constant time and, by definition of the DAG in our model, actions not involving a future cell 
take constant time. 

After executing one action, each thread can return zero, one or two threads to S (zero if it dies 
or suspends, one if it continues, and two if it forks or reactivates another thread). To return the 
new active threads to S: 

1. Compute the scan of the number of threads each processor returns. 

2. If the maximum scan value, jmax, is greater than the allocated size of S, then allocate an 
array double the size of S and copy S to the newly allocated space using a scan. 

3. For scan result .;' for a result thread, place the thread at S[t + j]. 

4. Increment the top of the stack by jmax (t — t + jmax). 

"A test-and-set operation will suffice, but we don't have such an operation in an EREW PRAM. 
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Although the size of S may be much greater than p, we can amortize the cost of the copy to the 
cost it took to place threads on S in the first place, in the same manner as in [52]. Because we 
double the array on each expansion, the cost of the copy is at most two times the maximum size 
of S. Since each processor has at most two threads to return to S, the implementation can place 
the threads back in S in constant (amortized) time using the unit-time scan primitive assumed in 
the machine model. 

In summary, since the algorithm can remove min{|5|,p} threads from the top of S in con- 
stant time, can execute one action of each thread in constant time, and can place resulting active 
threads back on S in constant time, the whole step takes constant time. Since, on each step, the 
implementation processes min{|S|,p} threads, and S holds all the active threads (by definition), 
the implementation executes a greedy schedule of the computation DAG. The number of steps is 
therefore bounded by w/p+d [27] and the total time by 0(w/p+d). Note that for the time bounds 
it does not matter which threads are taken from S on each step, allowing the implementation some 
freedom in selecting a schedule that is space or communication efficient. The stack discipline we 
describe is above is probably much better for space than a queue discipline, for example. 

We now outline how to handle the array .split operation used in the 2-6 trees. We first 
consider implementing a simpler array_scan which, given an array of integers of length n, returns 
the plus_scart of the array in 0(n) work and 0(1) depth (remember that n could be much larger 
than p). As with the array .split we account for the cost of the array _scan in our cost model as 
a DAG of depth 2 and breadth n. When coming to an array_scan in the code the implementation 
spawns n threads and places them in the set of active threads. Since creating n threads could 
take more than constant time on p processors, they are created lazily using a stub as described 
in [16]—threads are expanded when taken from S instead of when inserted. For each block of p 
or less threads that are scheduled from the set in a particular step, we can use the unit-time scan 
primitive assumed in the machine model to execute the scan across that subset and place the new 
running sum back into the stub. When the last thread finishes, it reactivates the parent thread 
and the scan is complete. If we associate each created thread as a node in the breadth n DAG then 
each node of this DAG can be executed in constant work, and the sink node (bottom node of the 
2 x n DAG) is ready as soon as the last thread is done. Since the schedule remains greedy (on each 
step the implementation always schedules min{|5|,p} threads), the number of steps is bounded 
by 0(w/p+ d), where w is now the total number of nodes in the DAG including the expanded 
DAGs for each array_scan (i.e., we are including-0{n) work for each array_scan). Each step of 
the scheduling algorithm still takes constant time so the total time on the EREW scan model is 
also bound by 0(w/p + d). 

The array .split can be implemented by broadcasting the pivot, comparing the array elements 
to it, executing two scans to determine the final locations of the array elements, and writing the 
values to these locations (see [19] for example). Each step can be implemented with 0{n) work and 
0(1) depth in a similar way as described above. ■ 

4.5    Conclusions 

This chapter suggests an approach for designing and analyzing pipelined parallel algorithms using 
futures. The approach is based on working with an abstract language-based model that hides the 
implementation of futures from the user. Universal bounds for implementing the model are then 
shown separately. 

The main advantages of this approach over pipelining by hand is that it leaves the management 
of pipelining to the runtime system, greatly simplifying the code. The code I gave for merging and 
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for treaps is indeed very simple, and is just the obvious sequential code with future annotations 
added in a few places. I expect that it would be very messy to pipeline the treaps by hand because of 
the unbalanced and dynamic nature of the tree structures. In particular, the depth at which subtrees 
returned by the split function become available is data dependent, and to maintain the depth 
bounds an implementation must start the next computation as soon as a node becomes available. 
The immediate reawakening of suspended tasks is therefore a critical part of any implementation. 
The code for the 2-6 trees is somewhat more complicated, but still significantly simpler than a 
version in which the pipelining is done by hand. 

Another important advantage of the approach is that it gives more flexibility to the implemen- 
tation to generate efficient schedules. The algorithms of Cole and PVW specify a very rigorous and 
synchronous schedule for pipelining while the specification of pipelining using futures is much more 
asynchronous—the only synchronization is through the future-cells themselves and there is no spec- 
ification in the algorithms of what happens on what step. This gives freedom to the implementation 
as to how to schedule the tasks. The implementation, for example, could optimize the schedule for 
either space efficiency [27, 16, 17] or locality [28]. On a uniprocessor the implementation could run 
the code in a purely sequential mode without any need for synchronization. 

I am not yet sure how general the approach is. I have not been able to show, for example, 
whether the method can be used to generate a sort that has depth O(logn). I conjecture that 
a simple mergesort based on the merge in section 4.3.1 has expected depth (averaged over all 
possible input orderings) close to O(logn), perhaps O(log n log log n). This algorithm has three 
levels of pipelining (i.e., has depth 0(log3n) without pipelining). 

This work is part of a larger research theme of studying language-based cost models, as opposed 
to machine-based models, and is an extension of the work on the NESL programming language and 
its corresponding cost model based on work and depth (summarized in [20]). 

4.6    ML Code 

All code in this chapter is a subset of ML [88] augmented with future notation, a question mark (?). 
The syntax I use is summarized in Figure 4.12. The LET VAR pattern = exp IN exp END notation 
is used to define local variables and is similar to Let in Lisp. The DATATYPE notation is used to 
define recursive structures. For example, the notation 

datatype tree = node of int*tree*tree  I   leaf; 

is used to define a datatype called tree which can either be a node with three fields (an integer, 
and two trees), or a leaf. 

Pattern matching is used both for pulling datatypes apart into their components (e.g., separating 
a list into its head and tail) and for branching based on the subtype. For example, in the pattern: 

fun mergeCleaf,B) = B 
I merge(A,leaf) = A 
I  merge(node(v,L,R)»B) = 

the code first checks if the first argument is a leaf type, and returns B if it is, it then checks if 
the second argument is a leaf type, and returns A if it is, otherwise it pulls the first argument, 
which must be a node into its three components (the integer v and the two subtrees L and R) and 
executes the remaining code. 
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defn        ::=FUN body  [   |   body ]*; 
:: = DATATYPE name = sumtype; 

body        : : = name pattern = exp 

exp : : = const 
name 
IF exp THEN exp ELSE exp 
LET VAR pattern = exp 

IN exp END 
name  (exp,...) 
exp binop exp 
( exp ) 
?    ea;p 

pattern    :: = name 
pattern, pattern 
name (pattern) 
( pattern ) 

sumtype :: = name   [OF prodtype] 
[   I  sumtype"] 

prodtype :: = name   [* prodtype] 

function defn 
datatype defn 

function body 

constant 
variable 
conditional 
local bindings 

fn application 
binary op 
paren expr'n 
future 

var or datatype 
tuple 
datatype 
paren pattern 

sum type 

product type 

Figure 4.12:     The ML syntax used in this chapter. 



Chapter 5 

Discussion 

Parallel computing seems to have temporarily settled down to embarrassingly parallel applications 
on distributed memory machines and networks of workstations, and large server applications on 
shared-memory multiprocessors. The latter applications include financial and business analysis, 
scientific computing, seismic processing, data mining, computer-aided engineering, animation, and 
electronic design. Soon all types of applications will be on shared-memory multiprocessors, includ- 
ing applications that use pointer data structures. But until pointer-based algorithms perform well, 
there will be little incentive to build such pointer-based applications. And until such applications 
are in use, there will be little incentive for hardware manufacturers to address the needs of these 
applications. The work presented in the dissertation is an early step in an effort to understand the 
potential and limitations of pointer-based applications. 

5.1 Limitations 

I did not design the algorithms presented here for distributed memory systems with moderate 
performance interconnect. That is, I did not attempt 

• to minimize the number of rounds of communication between processors and memory or 
among processors with local memory; 

• to minimize contention at routers or on communications links; 

• to minimize the average or maximum bandwidth required; or 

• to do load balancing or data distribution; 

Quite different techniques and algorithms are likely to be required to get reasonable performance 
on such loosely connected systems, and the question remains as to whether truly good performance 
is possible for some problems. 

5.2 Contributions 

I have made the following contributions to parallel pointer-based algorithm design and implemen- 
tation. 

• I developed a new list-ranking algorithm that is quite different and has smaller constants than 
other list-ranking algorithms. The solutions to list ranking seem to be wide and varied; my 
algorithm seems particularly well suited to vector multiprocessors. 

78 
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• I was first to consider treaps for balanced trees in the parallel setting. The advantage of 
treaps is that the simplicity of the sequential algorithms has carried over to the parallel ones. 

• I designed new algorithms for union, intersection, and difference on sets of size n and m that 
run in expected 0(m\og(n/m)) serial time or parallel work. This is optimal. 

• I developed two implementations of pointer-based problems: list ranking and dynamic bal- 
anced trees. 

• I demonstrated that simple work-efficient parallel pointer-based algorithms can be faster than 
optimal ones on practical problem sizes and much faster than serial implementations on fast 
workstations. 

• I showed how pipelining several tree-based algorithm could reduce the asymptotic depth of 
the algorithms by a logarithmic factor. For some of these algorithms, traditional pipelining 
with fixed delays would not reduce the algorithms' asymptotic depth. 

• I analyzed the performance of the algorithms presented here. The analysis of the list ranking 
included the constants associated with the implementation. The analysis technique for the 
dynamic pipelining algorithms is new. 

5.3 Future Work 

It would be interesting to investigate whether these parallel linked list and tree algorithms can be 
used on single processor workstations to close the growing speed gap between memory subsystems 
and high-performance processors. 

5.4 Conclusions 

Although we a long way from pointer-based algorithms being common on parallel machines, the 
trend towards multiprocessor workstations and servers in the general computing market will put 
pressure on bringing such applications onto them. The advantages may be two fold: better utiliza- 
tion of the multiple processors and better latency hiding to the memory subsystems. 

My implementation results show that optimal depth algorithms do not always provide the 
best performance solutions. Previous optimal algorithms are much more complex than the ones I 
presented here, and are likely to have much poorer performance on practical size problems. Even 
an optimal list-ranking algorithm derived from mine is likely to be slower, except possibly when 
there are many processors compared to the problem size. This algorithm by Ranade [97] has a 
single compaction phase followed by Wyllie's algorithm. But to know which elements need to be 
compacted requires marking completed elements during the main loop, increasing the constants of 
the algorithm. On the other hand, his algorithm has a better randomization method and is less 
likely exhibit worse-case behavior. The pipelining method for balanced trees is also likely to be 
slower than the nonoptimal depth algorithm I implemented. Pipelining results in many more short 
computation threads, increasing the overhead of the algorithms. 

As with many sequential algorithms, it appears that randomized parallel algorithms have a 
significant performance benefit over deterministic algorithms. Not only do randomized algorithms 
have much simpler solutions, they often solve other problems related to parallel computing, such 
as memory contention and load balancing. 
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Virtual processing and multithreading play a crucial role in parallel pointer-based implementa- 
tions. Without them, there would be no latency hiding and performance would be dismal. Work- 
efficiency and small constants are what distinguish good performance parallel algorithms from those 
that do not perform as well on the same hardware. This observation is not too surprising, since it 
also holds true for sequential processing. Of course, there may be other algorithmic solutions that 
reduce some specific hardware bottleneck and provide even better performance on certain machines. 
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